{"title":"p-adic 函数域上强逼近的互易性障碍","authors":"Haowen Zhang","doi":"10.1016/j.jnt.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Over function fields of <em>p</em>-adic curves, we construct stably rational varieties in the form of homogeneous spaces of <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with semisimple simply connected stabilizers and we show that strong approximation away from a non-empty set of places fails for such varieties. The construction combines the Lichtenbaum duality and the degree 3 cohomological invariants of the stabilizers. We then establish a reciprocity obstruction which accounts for this failure of strong approximation. We show that this reciprocity obstruction to strong approximation is the only one for counterexamples we constructed, and also for classifying varieties of tori. We also show that this reciprocity obstruction to strong approximation is compatible with known results for tori. At the end, we explain how a similar point of view shows that the reciprocity obstruction to weak approximation is the only one for classifying varieties of tori over <em>p</em>-adic function fields.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001331/pdfft?md5=cac87e78166d928ce995f053684adbf1&pid=1-s2.0-S0022314X24001331-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reciprocity obstruction to strong approximation over p-adic function fields\",\"authors\":\"Haowen Zhang\",\"doi\":\"10.1016/j.jnt.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over function fields of <em>p</em>-adic curves, we construct stably rational varieties in the form of homogeneous spaces of <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with semisimple simply connected stabilizers and we show that strong approximation away from a non-empty set of places fails for such varieties. The construction combines the Lichtenbaum duality and the degree 3 cohomological invariants of the stabilizers. We then establish a reciprocity obstruction which accounts for this failure of strong approximation. We show that this reciprocity obstruction to strong approximation is the only one for counterexamples we constructed, and also for classifying varieties of tori. We also show that this reciprocity obstruction to strong approximation is compatible with known results for tori. At the end, we explain how a similar point of view shows that the reciprocity obstruction to weak approximation is the only one for classifying varieties of tori over <em>p</em>-adic function fields.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001331/pdfft?md5=cac87e78166d928ce995f053684adbf1&pid=1-s2.0-S0022314X24001331-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在-adic 曲线的函数域上,我们以半简单简单连接稳定器的均质空间的形式构造了稳定有理变种,并证明了对于这类变种,从非空位集出发的强逼近是失败的。这一构造结合了利希滕鲍姆对偶性和稳定子的 3 级同调不变式。然后,我们建立了一个互易障碍来解释强近似的失败。我们证明,这个强近似的互易性障碍是我们构造的反例以及环的分类变体的唯一障碍。我们还证明,强近似的互易性障碍与已知的环状结果是一致的。最后,我们将解释如何从类似的角度说明,弱逼近的互易性障碍是对-二次函数域上的 tori varieties 进行分类的唯一障碍。
Reciprocity obstruction to strong approximation over p-adic function fields
Over function fields of p-adic curves, we construct stably rational varieties in the form of homogeneous spaces of with semisimple simply connected stabilizers and we show that strong approximation away from a non-empty set of places fails for such varieties. The construction combines the Lichtenbaum duality and the degree 3 cohomological invariants of the stabilizers. We then establish a reciprocity obstruction which accounts for this failure of strong approximation. We show that this reciprocity obstruction to strong approximation is the only one for counterexamples we constructed, and also for classifying varieties of tori. We also show that this reciprocity obstruction to strong approximation is compatible with known results for tori. At the end, we explain how a similar point of view shows that the reciprocity obstruction to weak approximation is the only one for classifying varieties of tori over p-adic function fields.