有界域中具有 p-拉普拉奇的薛定谔-泊松系统的纤维化方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinfeng Xue, Libo Wang
{"title":"有界域中具有 p-拉普拉奇的薛定谔-泊松系统的纤维化方法","authors":"Jinfeng Xue, Libo Wang","doi":"10.1515/math-2024-0015","DOIUrl":null,"url":null,"abstract":"In this article, we study a <jats:italic>p</jats:italic>-Laplacian Schrödinger-Poisson system involving a parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>q\\ne 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> in bounded domains. By using the Nehari manifold and the fibering method, we obtain the non-existence and multiplicity of nontrivial solutions. On one hand, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>{q}^{* }\\gt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that only the trivial solution is admitted for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mo>+</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>.</m:mo> </m:math> <jats:tex-math>q\\in \\left({q}^{* },+\\infty ).</jats:tex-math> </jats:alternatives> </jats:inline-formula> On the other hand, there are two positive solutions existing for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> <m:mo>+</m:mo> <m:mi>ε</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>q\\in \\left(0,{q}_{0}^{* }+\\varepsilon )</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ε</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>\\varepsilon \\gt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> <m:mo>+</m:mo> <m:mi>ε</m:mi> <m:mo>&lt;</m:mo> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>.</m:mo> </m:math> <jats:tex-math>{q}_{0}^{* }+\\varepsilon \\lt {q}^{* }.</jats:tex-math> </jats:alternatives> </jats:inline-formula> In particular, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:math> <jats:tex-math>{q}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0015_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{q}_{0}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula> correspond to the supremum for the nonlinear generalized Rayleigh quotients, respectively. The specific form of the nonlinear generalized Rayleigh quotients is calculated. Moreover, it is worth mentioning that we also obtain the qualitative properties associated with the energy level of the solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fibering method approach for a Schrödinger-Poisson system with p-Laplacian in bounded domains\",\"authors\":\"Jinfeng Xue, Libo Wang\",\"doi\":\"10.1515/math-2024-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study a <jats:italic>p</jats:italic>-Laplacian Schrödinger-Poisson system involving a parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0015_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>q</m:mi> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>q\\\\ne 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> in bounded domains. By using the Nehari manifold and the fibering method, we obtain the non-existence and multiplicity of nontrivial solutions. On one hand, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0015_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>{q}^{* }\\\\gt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that only the trivial solution is admitted for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0015_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>q</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mo>+</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>.</m:mo> </m:math> <jats:tex-math>q\\\\in \\\\left({q}^{* },+\\\\infty ).</jats:tex-math> </jats:alternatives> </jats:inline-formula> On the other hand, there are two positive solutions existing for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0015_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>q</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> <m:mo>+</m:mo> <m:mi>ε</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>q\\\\in \\\\left(0,{q}_{0}^{* }+\\\\varepsilon )</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0015_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ε</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>\\\\varepsilon \\\\gt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0015_eq_006.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> <m:mo>+</m:mo> <m:mi>ε</m:mi> <m:mo>&lt;</m:mo> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>.</m:mo> </m:math> <jats:tex-math>{q}_{0}^{* }+\\\\varepsilon \\\\lt {q}^{* }.</jats:tex-math> </jats:alternatives> </jats:inline-formula> In particular, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0015_eq_007.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:math> <jats:tex-math>{q}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0015_eq_008.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{q}_{0}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula> correspond to the supremum for the nonlinear generalized Rayleigh quotients, respectively. The specific form of the nonlinear generalized Rayleigh quotients is calculated. Moreover, it is worth mentioning that we also obtain the qualitative properties associated with the energy level of the solutions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0015\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0015","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了有界域中涉及参数q≠0 q\ne 0的p-拉普拉奇薛定谔-泊松系统。通过使用奈哈里流形和纤维化方法,我们得到了非小解的不存在性和多重性。一方面,存在 q * > 0 {q}^{* }\gt 0 这样的情况,即对于 q∈ ( q * , + ∞ ) .q\in \left({q}^{* },+\infty ) 只承认三元解。 另一方面,对于 q∈ ( 0 , q 0 * + ε ) q\in \left(0,{q}_{0}^{* }+\varepsilon ) 存在两个正解,其中 ε > 0 \varepsilon \gt 0 和 q 0 * + ε < q * . {q}_{0}^{* }+\varepsilon \lt {q}^{* }。 其中,q * {q}^{* } 和 q 0 * {q}_{0}^{* } 分别对应于非线性广义瑞利商的上位。计算了非线性广义瑞利商的具体形式。此外,值得一提的是,我们还得到了与解的能级相关的定性性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The fibering method approach for a Schrödinger-Poisson system with p-Laplacian in bounded domains
In this article, we study a p-Laplacian Schrödinger-Poisson system involving a parameter q 0 q\ne 0 in bounded domains. By using the Nehari manifold and the fibering method, we obtain the non-existence and multiplicity of nontrivial solutions. On one hand, there exists q * > 0 {q}^{* }\gt 0 such that only the trivial solution is admitted for q ( q * , + ) . q\in \left({q}^{* },+\infty ). On the other hand, there are two positive solutions existing for q ( 0 , q 0 * + ε ) q\in \left(0,{q}_{0}^{* }+\varepsilon ) , where ε > 0 \varepsilon \gt 0 and q 0 * + ε < q * . {q}_{0}^{* }+\varepsilon \lt {q}^{* }. In particular, q * {q}^{* } and q 0 * {q}_{0}^{* } correspond to the supremum for the nonlinear generalized Rayleigh quotients, respectively. The specific form of the nonlinear generalized Rayleigh quotients is calculated. Moreover, it is worth mentioning that we also obtain the qualitative properties associated with the energy level of the solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信