子集平面最大反链的大小

Order Pub Date : 2024-06-27 DOI:10.1007/s11083-024-09675-9
Jerrold R. Griggs, Thomas Kalinowski, Uwe Leck, Ian T. Roberts, Michael Schmitz
{"title":"子集平面最大反链的大小","authors":"Jerrold R. Griggs, Thomas Kalinowski, Uwe Leck, Ian T. Roberts, Michael Schmitz","doi":"10.1007/s11083-024-09675-9","DOIUrl":null,"url":null,"abstract":"<p>This is the second of two papers investigating for which positive integers <i>m</i> there exists a maximal antichain of size <i>m</i> in the Boolean lattice <span>\\(B_n\\)</span> (the power set of <span>\\([n]:=\\{1,2,\\dots ,n\\}\\)</span>, ordered by inclusion). In the first part, the sizes of maximal antichains have been characterized. Here we provide an alternative construction with the benefit of showing that almost all sizes of maximal antichains can be obtained using antichains containing only <i>l</i>-sets and <span>\\((l+1)\\)</span>-sets for some <i>l</i>.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sizes of Flat Maximal Antichains of Subsets\",\"authors\":\"Jerrold R. Griggs, Thomas Kalinowski, Uwe Leck, Ian T. Roberts, Michael Schmitz\",\"doi\":\"10.1007/s11083-024-09675-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This is the second of two papers investigating for which positive integers <i>m</i> there exists a maximal antichain of size <i>m</i> in the Boolean lattice <span>\\\\(B_n\\\\)</span> (the power set of <span>\\\\([n]:=\\\\{1,2,\\\\dots ,n\\\\}\\\\)</span>, ordered by inclusion). In the first part, the sizes of maximal antichains have been characterized. Here we provide an alternative construction with the benefit of showing that almost all sizes of maximal antichains can be obtained using antichains containing only <i>l</i>-sets and <span>\\\\((l+1)\\\\)</span>-sets for some <i>l</i>.</p>\",\"PeriodicalId\":501237,\"journal\":{\"name\":\"Order\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Order\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11083-024-09675-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09675-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文是两篇论文中的第二篇,研究在布尔网格 \(B_n\)(\([n]:=\{1,2,\dots ,n\})的幂集,按包含排序)中,对于哪些正整数 m 存在大小为 m 的最大反链。在第一部分中,已经描述了最大反链的大小。在这里,我们提供了另一种构造,它的好处是表明了几乎所有最大反链的大小都可以通过只包含 l 个集合和某个 l 的 \((l+1)\)集合的反链来获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sizes of Flat Maximal Antichains of Subsets

This is the second of two papers investigating for which positive integers m there exists a maximal antichain of size m in the Boolean lattice \(B_n\) (the power set of \([n]:=\{1,2,\dots ,n\}\), ordered by inclusion). In the first part, the sizes of maximal antichains have been characterized. Here we provide an alternative construction with the benefit of showing that almost all sizes of maximal antichains can be obtained using antichains containing only l-sets and \((l+1)\)-sets for some l.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信