热耦合无粘性、电阻磁流体动力学的 Voigt 规则化

IF 1.3 4区 数学 Q1 MATHEMATICS
Xingwei Yang,Pengzhan Huang, Yinnian He
{"title":"热耦合无粘性、电阻磁流体动力学的 Voigt 规则化","authors":"Xingwei Yang,Pengzhan Huang, Yinnian He","doi":"10.4208/ijnam2024-1019","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the existence of weak solution and the uniqueness of strong\nsolution to a Voigt-regularization of the three-dimensional thermally coupled inviscid, resistive\nMHD equations. We also propose a fully discrete scheme for the considered problem, which is\nproven to be stable and convergent. All computational results support the theoretical analysis\nand demonstrate the effectiveness of the presented scheme.","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Voigt-Regularization of the Thermally Coupled Inviscid, Resistive Magnetohydrodynamic\",\"authors\":\"Xingwei Yang,Pengzhan Huang, Yinnian He\",\"doi\":\"10.4208/ijnam2024-1019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove the existence of weak solution and the uniqueness of strong\\nsolution to a Voigt-regularization of the three-dimensional thermally coupled inviscid, resistive\\nMHD equations. We also propose a fully discrete scheme for the considered problem, which is\\nproven to be stable and convergent. All computational results support the theoretical analysis\\nand demonstrate the effectiveness of the presented scheme.\",\"PeriodicalId\":50301,\"journal\":{\"name\":\"International Journal of Numerical Analysis and Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Analysis and Modeling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/ijnam2024-1019\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Analysis and Modeling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/ijnam2024-1019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了三维热耦合无粘性、阻力 MHD 方程的 Voigt 规则化弱解的存在性和强解的唯一性。我们还为所考虑的问题提出了一个完全离散的方案,该方案被证明是稳定和收敛的。所有计算结果都支持理论分析,并证明了所提出方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Voigt-Regularization of the Thermally Coupled Inviscid, Resistive Magnetohydrodynamic
In this paper, we prove the existence of weak solution and the uniqueness of strong solution to a Voigt-regularization of the three-dimensional thermally coupled inviscid, resistive MHD equations. We also propose a fully discrete scheme for the considered problem, which is proven to be stable and convergent. All computational results support the theoretical analysis and demonstrate the effectiveness of the presented scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
1
审稿时长
6-12 weeks
期刊介绍: The journal is directed to the broad spectrum of researchers in numerical methods throughout science and engineering, and publishes high quality original papers in all fields of numerical analysis and mathematical modeling including: numerical differential equations, scientific computing, linear algebra, control, optimization, and related areas of engineering and scientific applications. The journal welcomes the contribution of original developments of numerical methods, mathematical analysis leading to better understanding of the existing algorithms, and applications of numerical techniques to real engineering and scientific problems. Rigorous studies of the convergence of algorithms, their accuracy and stability, and their computational complexity are appropriate for this journal. Papers addressing new numerical algorithms and techniques, demonstrating the potential of some novel ideas, describing experiments involving new models and simulations for practical problems are also suitable topics for the journal. The journal welcomes survey articles which summarize state of art knowledge and present open problems of particular numerical techniques and mathematical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信