具有 x 相关系数的耦合波方程组的周期解

IF 2.1 2区 数学 Q1 MATHEMATICS
Jiayu Deng, Shuguan Ji
{"title":"具有 x 相关系数的耦合波方程组的周期解","authors":"Jiayu Deng, Shuguan Ji","doi":"10.1515/ans-2023-0144","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the periodic solutions for a coupled system of wave equations with <jats:italic>x</jats:italic>-dependent coefficients. Such a model arises naturally when two waves propagate simultaneously in the nonisotrpic media. In this paper, for the periods having the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>T</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>a</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>b</m:mi> </m:mrow> </m:mfrac> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mspace width=\"0.3333em\"/> <m:mspace width=\"0.28em\"/> <m:mtext>are positive integers</m:mtext> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>$T=\\frac{2a-1}{b}\\left(a,b \\text{are\\,positive\\,integers}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0144_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula> and some types of boundary conditions, we obtain the existence of the time periodic solutions and analyze the asymptotic behaviors as the coupled parameter goes to zero, when the nonlinearities are superlinear and monotone, by using the variational method. In particular, the condition ess inf <jats:italic>η</jats:italic> <jats:sub> <jats:italic>ϱ</jats:italic> </jats:sub>(<jats:italic>x</jats:italic>) &gt; 0 is not required.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"31 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic solutions for a coupled system of wave equations with x-dependent coefficients\",\"authors\":\"Jiayu Deng, Shuguan Ji\",\"doi\":\"10.1515/ans-2023-0144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the periodic solutions for a coupled system of wave equations with <jats:italic>x</jats:italic>-dependent coefficients. Such a model arises naturally when two waves propagate simultaneously in the nonisotrpic media. In this paper, for the periods having the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi>T</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>a</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>b</m:mi> </m:mrow> </m:mfrac> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mspace width=\\\"0.3333em\\\"/> <m:mspace width=\\\"0.28em\\\"/> <m:mtext>are positive integers</m:mtext> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>$T=\\\\frac{2a-1}{b}\\\\left(a,b \\\\text{are\\\\,positive\\\\,integers}\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0144_ineq_001.png\\\"/> </jats:alternatives> </jats:inline-formula> and some types of boundary conditions, we obtain the existence of the time periodic solutions and analyze the asymptotic behaviors as the coupled parameter goes to zero, when the nonlinearities are superlinear and monotone, by using the variational method. In particular, the condition ess inf <jats:italic>η</jats:italic> <jats:sub> <jats:italic>ϱ</jats:italic> </jats:sub>(<jats:italic>x</jats:italic>) &gt; 0 is not required.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0144\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0144","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是具有 x 依赖系数的耦合波方程系统的周期解。当两个波同时在非等向介质中传播时,自然会产生这样的模型。在本文中,对于具有 T = 2 a - 1 b (a , b 为正整数)$T=\frac{2a-1}{b}\left(a,b \text{are\,positive\,integers}\right)$ 形式的周期和某些类型的边界条件,我们利用变分法得到了时间周期解的存在性,并分析了当非线性为超线性和单调时,耦合参数归零时的渐近行为。其中,不需要条件 ess inf η ϱ (x) > 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic solutions for a coupled system of wave equations with x-dependent coefficients
This paper is concerned with the periodic solutions for a coupled system of wave equations with x-dependent coefficients. Such a model arises naturally when two waves propagate simultaneously in the nonisotrpic media. In this paper, for the periods having the form T = 2 a 1 b ( a , b are positive integers ) $T=\frac{2a-1}{b}\left(a,b \text{are\,positive\,integers}\right)$ and some types of boundary conditions, we obtain the existence of the time periodic solutions and analyze the asymptotic behaviors as the coupled parameter goes to zero, when the nonlinearities are superlinear and monotone, by using the variational method. In particular, the condition ess inf η ϱ (x) > 0 is not required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信