0 循环的下降和埃塔勒-布劳尔障碍

Pub Date : 2024-06-27 DOI:10.1093/imrn/rnae140
Francesca Balestrieri, Jennifer Berg
{"title":"0 循环的下降和埃塔勒-布劳尔障碍","authors":"Francesca Balestrieri, Jennifer Berg","doi":"10.1093/imrn/rnae140","DOIUrl":null,"url":null,"abstract":"For 0-cycles on a variety over a number field, we define an analogue of the classical descent set for rational points. This leads to, among other things, a definition of the étale-Brauer obstruction set for 0-cycles. We show that all these constructions are compatible with Suslin’s singular homology of degree 0. We then transfer some tools and techniques used to study the arithmetic of rational points into the setting of 0-cycles. For example, we extend the strategy developed by Y. Liang, relating the arithmetic of rational points over finite extensions of the base field to that of 0-cycles, to torsors. We give applications of our results to study the arithmetic behaviour of 0-cycles for Enriques surfaces, torsors given by (twisted) Kummer varieties, universal torsors, and torsors under tori.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Descent and Étale-Brauer Obstructions for 0-Cycles\",\"authors\":\"Francesca Balestrieri, Jennifer Berg\",\"doi\":\"10.1093/imrn/rnae140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For 0-cycles on a variety over a number field, we define an analogue of the classical descent set for rational points. This leads to, among other things, a definition of the étale-Brauer obstruction set for 0-cycles. We show that all these constructions are compatible with Suslin’s singular homology of degree 0. We then transfer some tools and techniques used to study the arithmetic of rational points into the setting of 0-cycles. For example, we extend the strategy developed by Y. Liang, relating the arithmetic of rational points over finite extensions of the base field to that of 0-cycles, to torsors. We give applications of our results to study the arithmetic behaviour of 0-cycles for Enriques surfaces, torsors given by (twisted) Kummer varieties, universal torsors, and torsors under tori.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于数域上的综上的 0 循环,我们定义了有理点的经典下降集。除其他外,这还引出了 0 循环的 étale-Brauer 障碍集的定义。我们证明所有这些构造都与苏斯林的 0 度奇异同构相兼容。然后,我们将一些用于研究有理点算术的工具和技术转移到 0 循环的环境中。例如,我们将梁颖开发的将基域有限扩展上有理点的算术与 0 循环的算术联系起来的策略扩展到了簇。我们将我们的结果应用于研究恩里克斯曲面的 0 循环算术行为、库默尔(扭曲)变体给出的转子、通用转子和环下转子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Descent and Étale-Brauer Obstructions for 0-Cycles
For 0-cycles on a variety over a number field, we define an analogue of the classical descent set for rational points. This leads to, among other things, a definition of the étale-Brauer obstruction set for 0-cycles. We show that all these constructions are compatible with Suslin’s singular homology of degree 0. We then transfer some tools and techniques used to study the arithmetic of rational points into the setting of 0-cycles. For example, we extend the strategy developed by Y. Liang, relating the arithmetic of rational points over finite extensions of the base field to that of 0-cycles, to torsors. We give applications of our results to study the arithmetic behaviour of 0-cycles for Enriques surfaces, torsors given by (twisted) Kummer varieties, universal torsors, and torsors under tori.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信