{"title":"实现环境公共卫生的精确模型:以废水为基础的流行病学评估人群暴露和相关疾病","authors":"Devin A. Bowes","doi":"10.1007/s40471-024-00350-6","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose of Review</h3><p>Impacts from climate change and use of toxic chemicals that contaminate our environment continue to pose a threat to the health of human populations. The field of wastewater-based epidemiology (WBE) has evolved significantly in recent years due to the COVID-19 global pandemic, however, investigating the utility of this application to fit within a broader environmental public health framework remains relatively unexplored. This review offers a comprehensive summary of the historical progression of WBE and highlights recent notable advancements to support its use for assessing environmental exposures in human populations.</p><h3 data-test=\"abstract-sub-heading\">Recent Findings</h3><p>Early pioneering studies confirmed feasibility of this application, including measuring pesticides, plasticizers, and flame retardants in influent wastewater, that offered foundational knowledge to support successful expansion in recent work, including exposure to heavy metals and mycotoxins. Collectively, it was identified that evaluating biomarker suitability (e.g., in-sewer degradation, specificity) and pharmacokinetic data of excreted metabolites are crucial for accurate interpretation of results. Additionally, measurements of contaminants differed between catchment areas, indicating disproportionate exposures across populations.</p><h3 data-test=\"abstract-sub-heading\">Summary</h3><p>The use of WBE offers a near real-time approach to address public health priorities, with strong evidence suggesting it can be applied to generate population-level environmental exposure assessments. Research gaps such as biomarker selection, near real-time intervention efficacy assessment, and data analysis approaches are identified in this review and encouraged to be addressed in future work, informing key areas to support the use of WBE towards a precision-based model for environmental public health.</p>","PeriodicalId":48527,"journal":{"name":"Current Epidemiology Reports","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Precision Model for Environmental Public Health: Wastewater-based Epidemiology to Assess Population-level Exposures and Related Diseases\",\"authors\":\"Devin A. Bowes\",\"doi\":\"10.1007/s40471-024-00350-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose of Review</h3><p>Impacts from climate change and use of toxic chemicals that contaminate our environment continue to pose a threat to the health of human populations. The field of wastewater-based epidemiology (WBE) has evolved significantly in recent years due to the COVID-19 global pandemic, however, investigating the utility of this application to fit within a broader environmental public health framework remains relatively unexplored. This review offers a comprehensive summary of the historical progression of WBE and highlights recent notable advancements to support its use for assessing environmental exposures in human populations.</p><h3 data-test=\\\"abstract-sub-heading\\\">Recent Findings</h3><p>Early pioneering studies confirmed feasibility of this application, including measuring pesticides, plasticizers, and flame retardants in influent wastewater, that offered foundational knowledge to support successful expansion in recent work, including exposure to heavy metals and mycotoxins. Collectively, it was identified that evaluating biomarker suitability (e.g., in-sewer degradation, specificity) and pharmacokinetic data of excreted metabolites are crucial for accurate interpretation of results. Additionally, measurements of contaminants differed between catchment areas, indicating disproportionate exposures across populations.</p><h3 data-test=\\\"abstract-sub-heading\\\">Summary</h3><p>The use of WBE offers a near real-time approach to address public health priorities, with strong evidence suggesting it can be applied to generate population-level environmental exposure assessments. Research gaps such as biomarker selection, near real-time intervention efficacy assessment, and data analysis approaches are identified in this review and encouraged to be addressed in future work, informing key areas to support the use of WBE towards a precision-based model for environmental public health.</p>\",\"PeriodicalId\":48527,\"journal\":{\"name\":\"Current Epidemiology Reports\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Epidemiology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40471-024-00350-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Epidemiology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40471-024-00350-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a Precision Model for Environmental Public Health: Wastewater-based Epidemiology to Assess Population-level Exposures and Related Diseases
Purpose of Review
Impacts from climate change and use of toxic chemicals that contaminate our environment continue to pose a threat to the health of human populations. The field of wastewater-based epidemiology (WBE) has evolved significantly in recent years due to the COVID-19 global pandemic, however, investigating the utility of this application to fit within a broader environmental public health framework remains relatively unexplored. This review offers a comprehensive summary of the historical progression of WBE and highlights recent notable advancements to support its use for assessing environmental exposures in human populations.
Recent Findings
Early pioneering studies confirmed feasibility of this application, including measuring pesticides, plasticizers, and flame retardants in influent wastewater, that offered foundational knowledge to support successful expansion in recent work, including exposure to heavy metals and mycotoxins. Collectively, it was identified that evaluating biomarker suitability (e.g., in-sewer degradation, specificity) and pharmacokinetic data of excreted metabolites are crucial for accurate interpretation of results. Additionally, measurements of contaminants differed between catchment areas, indicating disproportionate exposures across populations.
Summary
The use of WBE offers a near real-time approach to address public health priorities, with strong evidence suggesting it can be applied to generate population-level environmental exposure assessments. Research gaps such as biomarker selection, near real-time intervention efficacy assessment, and data analysis approaches are identified in this review and encouraged to be addressed in future work, informing key areas to support the use of WBE towards a precision-based model for environmental public health.