Heather Z. Brooks, Philip S. Chodrow, Mason A. Porter
{"title":"舆论动态的西格玛有界信心模型中两极分化的出现","authors":"Heather Z. Brooks, Philip S. Chodrow, Mason A. Porter","doi":"10.1137/22m1527258","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1442-1470, June 2024. <br/>Abstract.We study a nonlinear bounded-confidence model (BCM) of continuous-time opinion dynamics on networks with both persuadable individuals and zealots. The model is parameterized by a nonnegative scalar [math], which controls the steepness of a smooth influence function. This influence function encodes the relative weights that individuals place on the opinions of other individuals. When [math], this influence function recovers Taylor’s averaging model; when [math], the influence function converges to that of a modified Hegselmann–Krause (HK) BCM. Unlike the classical HK model, however, our sigmoidal bounded-confidence model (SBCM) is smooth for any finite [math]. We show that the set of steady states of our SBCM is qualitatively similar to that of the Taylor model when [math] is small and that the set of steady states approaches a subset of the set of steady states of a modified HK model as [math]. For certain special graph topologies, we give analytical descriptions of important features of the space of steady states. A notable result is a closed-form relationship between graph topology and the stability of polarized states in a simple special case that models echo chambers in social networks. Because the influence function of our BCM is smooth, we are able to study it with linear stability analysis, which is difficult to employ with the usual discontinuous influence functions in BCMs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of Polarization in a Sigmoidal Bounded-Confidence Model of Opinion Dynamics\",\"authors\":\"Heather Z. Brooks, Philip S. Chodrow, Mason A. Porter\",\"doi\":\"10.1137/22m1527258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1442-1470, June 2024. <br/>Abstract.We study a nonlinear bounded-confidence model (BCM) of continuous-time opinion dynamics on networks with both persuadable individuals and zealots. The model is parameterized by a nonnegative scalar [math], which controls the steepness of a smooth influence function. This influence function encodes the relative weights that individuals place on the opinions of other individuals. When [math], this influence function recovers Taylor’s averaging model; when [math], the influence function converges to that of a modified Hegselmann–Krause (HK) BCM. Unlike the classical HK model, however, our sigmoidal bounded-confidence model (SBCM) is smooth for any finite [math]. We show that the set of steady states of our SBCM is qualitatively similar to that of the Taylor model when [math] is small and that the set of steady states approaches a subset of the set of steady states of a modified HK model as [math]. For certain special graph topologies, we give analytical descriptions of important features of the space of steady states. A notable result is a closed-form relationship between graph topology and the stability of polarized states in a simple special case that models echo chambers in social networks. Because the influence function of our BCM is smooth, we are able to study it with linear stability analysis, which is difficult to employ with the usual discontinuous influence functions in BCMs.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1527258\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1527258","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Emergence of Polarization in a Sigmoidal Bounded-Confidence Model of Opinion Dynamics
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1442-1470, June 2024. Abstract.We study a nonlinear bounded-confidence model (BCM) of continuous-time opinion dynamics on networks with both persuadable individuals and zealots. The model is parameterized by a nonnegative scalar [math], which controls the steepness of a smooth influence function. This influence function encodes the relative weights that individuals place on the opinions of other individuals. When [math], this influence function recovers Taylor’s averaging model; when [math], the influence function converges to that of a modified Hegselmann–Krause (HK) BCM. Unlike the classical HK model, however, our sigmoidal bounded-confidence model (SBCM) is smooth for any finite [math]. We show that the set of steady states of our SBCM is qualitatively similar to that of the Taylor model when [math] is small and that the set of steady states approaches a subset of the set of steady states of a modified HK model as [math]. For certain special graph topologies, we give analytical descriptions of important features of the space of steady states. A notable result is a closed-form relationship between graph topology and the stability of polarized states in a simple special case that models echo chambers in social networks. Because the influence function of our BCM is smooth, we are able to study it with linear stability analysis, which is difficult to employ with the usual discontinuous influence functions in BCMs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.