ω$类别中的可逆单元

Thibaut Benjamin, Ioannis Markakis
{"title":"ω$类别中的可逆单元","authors":"Thibaut Benjamin, Ioannis Markakis","doi":"arxiv-2406.12127","DOIUrl":null,"url":null,"abstract":"We study coinductive invertibility of cells in weak $\\omega$-categories. We\nuse the inductive presentation of weak $\\omega$-categories via an adjunction\nwith the category of computads, and show that invertible cells are closed under\nall operations of $\\omega$-categories. Moreover, we give a simple criterion for\ninvertibility in computads, together with an algorithm computing the data\nwitnessing the invertibility, including the inverse, and the cancellation data.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invertible cells in $ω$-categories\",\"authors\":\"Thibaut Benjamin, Ioannis Markakis\",\"doi\":\"arxiv-2406.12127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study coinductive invertibility of cells in weak $\\\\omega$-categories. We\\nuse the inductive presentation of weak $\\\\omega$-categories via an adjunction\\nwith the category of computads, and show that invertible cells are closed under\\nall operations of $\\\\omega$-categories. Moreover, we give a simple criterion for\\ninvertibility in computads, together with an algorithm computing the data\\nwitnessing the invertibility, including the inverse, and the cancellation data.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.12127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.12127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究弱$\omega$类中单元的共生可逆性。我们利用弱$\omega$类通过与计算子范畴的一个隶属关系的归纳呈现,并证明可逆单元在$\omega$类的所有操作下都是封闭的。此外,我们还给出了一个在 computads 中可逆性的简单判据,以及一个计算可逆性数据(包括逆数据和取消数据)的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invertible cells in $ω$-categories
We study coinductive invertibility of cells in weak $\omega$-categories. We use the inductive presentation of weak $\omega$-categories via an adjunction with the category of computads, and show that invertible cells are closed under all operations of $\omega$-categories. Moreover, we give a simple criterion for invertibility in computads, together with an algorithm computing the data witnessing the invertibility, including the inverse, and the cancellation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信