确定 Korteweg-de Vries 方程中的未知系数

IF 0.9 4区 数学 Q2 MATHEMATICS
Lin Sang, Yan Qiao, Hua Wu
{"title":"确定 Korteweg-de Vries 方程中的未知系数","authors":"Lin Sang, Yan Qiao, Hua Wu","doi":"10.1515/jiip-2024-0008","DOIUrl":null,"url":null,"abstract":"In this paper, a space-time spectral method for solving an inverse problem in the Korteweg–de Vries equation is considered. Optimal order of convergence of the semi-discrete method is obtained in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2024-0008_eq_0190.png\"/> <jats:tex-math>{L^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-norm. The discrete schemes of the method are based on the modified Fourier pseudospectral method in spatial direction and the Legendre-tau method in temporal direction. The nonlinear term is computed via the fast Fourier transform and fast Legendre transform. The method is implemented by the explicit-implicit iterative method. Numerical results are given to show the accuracy and capability of this space-time spectral method.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"34 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of an unknown coefficient in the Korteweg–de Vries equation\",\"authors\":\"Lin Sang, Yan Qiao, Hua Wu\",\"doi\":\"10.1515/jiip-2024-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a space-time spectral method for solving an inverse problem in the Korteweg–de Vries equation is considered. Optimal order of convergence of the semi-discrete method is obtained in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2024-0008_eq_0190.png\\\"/> <jats:tex-math>{L^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-norm. The discrete schemes of the method are based on the modified Fourier pseudospectral method in spatial direction and the Legendre-tau method in temporal direction. The nonlinear term is computed via the fast Fourier transform and fast Legendre transform. The method is implemented by the explicit-implicit iterative method. Numerical results are given to show the accuracy and capability of this space-time spectral method.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2024-0008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2024-0008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种求解 Korteweg-de Vries 方程逆问题的时空谱方法。半离散方法在 L 2 {L^{2}} 规范下获得了最佳收敛阶数。 -norm。该方法的离散方案在空间方向上基于改进的傅立叶伪谱法,在时间方向上基于 Legendre-tau 法。非线性项通过快速傅立叶变换和快速 Legendre 变换计算。该方法通过显式-隐式迭代法实现。给出的数值结果表明了这种时空谱方法的准确性和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of an unknown coefficient in the Korteweg–de Vries equation
In this paper, a space-time spectral method for solving an inverse problem in the Korteweg–de Vries equation is considered. Optimal order of convergence of the semi-discrete method is obtained in L 2 {L^{2}} -norm. The discrete schemes of the method are based on the modified Fourier pseudospectral method in spatial direction and the Legendre-tau method in temporal direction. The nonlinear term is computed via the fast Fourier transform and fast Legendre transform. The method is implemented by the explicit-implicit iterative method. Numerical results are given to show the accuracy and capability of this space-time spectral method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信