利用平滑颗粒流体力学模拟和缓解喷射器深孔钻进过程中的涡流形成

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Andreas Baumann, Julian Frederic Gerken, Daniel Sollich, Nuwan Rupasinghe, Dirk Biermann, Peter Eberhard
{"title":"利用平滑颗粒流体力学模拟和缓解喷射器深孔钻进过程中的涡流形成","authors":"Andreas Baumann,&nbsp;Julian Frederic Gerken,&nbsp;Daniel Sollich,&nbsp;Nuwan Rupasinghe,&nbsp;Dirk Biermann,&nbsp;Peter Eberhard","doi":"10.1007/s40571-024-00789-w","DOIUrl":null,"url":null,"abstract":"<div><p>Ejector deep hole drilling achieves high-quality boreholes in production processes. High feed rates are applied to ensure a high productivity level, requiring reliable chip removal from the cutting zone for a stable process. Therefore, a constant metalworking fluid flow under high volume flow rates or high pressure is required. Experimental results show a vortex formation at the outer cutting edge. This vortex can lead to delayed chip removal from the cutting zone, and ultimately, it can lead to chip clogging and result in drill breakage due to increased torque. This paper investigates modified drill head designs using the smoothed particle hydrodynamics method. The investigated modifications include various designs of the chip mouth covering. Besides graphical analysis based on flow visualizations, flow meters are placed at the tool’s head to evaluate the impact of the modifications on the flow rate and possible increased resistance and relocation of the fluid flow from the outer cutting edge to other parts of the tool. The simulation results for the reference design show the experimentally observed vortex formation, validating the simulation model. By adding the tool’s rotation in the SPH simulation, which is not included in the experiments for observation reasons, the vortex formation is positively influenced. In addition, some designs show promising results to further mitigate the vortex formation while maintaining a sufficient fluid flow around the cutting edges.\n</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 5","pages":"1851 - 1862"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40571-024-00789-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling and mitigation of vortex formation in ejector deep hole drilling with smoothed particle hydrodynamics\",\"authors\":\"Andreas Baumann,&nbsp;Julian Frederic Gerken,&nbsp;Daniel Sollich,&nbsp;Nuwan Rupasinghe,&nbsp;Dirk Biermann,&nbsp;Peter Eberhard\",\"doi\":\"10.1007/s40571-024-00789-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ejector deep hole drilling achieves high-quality boreholes in production processes. High feed rates are applied to ensure a high productivity level, requiring reliable chip removal from the cutting zone for a stable process. Therefore, a constant metalworking fluid flow under high volume flow rates or high pressure is required. Experimental results show a vortex formation at the outer cutting edge. This vortex can lead to delayed chip removal from the cutting zone, and ultimately, it can lead to chip clogging and result in drill breakage due to increased torque. This paper investigates modified drill head designs using the smoothed particle hydrodynamics method. The investigated modifications include various designs of the chip mouth covering. Besides graphical analysis based on flow visualizations, flow meters are placed at the tool’s head to evaluate the impact of the modifications on the flow rate and possible increased resistance and relocation of the fluid flow from the outer cutting edge to other parts of the tool. The simulation results for the reference design show the experimentally observed vortex formation, validating the simulation model. By adding the tool’s rotation in the SPH simulation, which is not included in the experiments for observation reasons, the vortex formation is positively influenced. In addition, some designs show promising results to further mitigate the vortex formation while maintaining a sufficient fluid flow around the cutting edges.\\n</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"11 5\",\"pages\":\"1851 - 1862\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40571-024-00789-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-024-00789-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00789-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

喷射器深孔钻可在生产过程中钻出高质量的孔。采用高进给率可确保高生产率水平,同时要求切削区排屑可靠,以实现稳定的加工过程。因此,需要在大流量或高压下保持金属加工液的恒定流动。实验结果表明,外切削刃处会形成涡流。这种涡流会导致切削区的排屑延迟,最终导致切屑堵塞,并因扭矩增大而导致钻头断裂。本文采用平滑粒子流体力学方法研究了改进后的钻头设计。所研究的改进包括各种切屑口覆盖设计。除了基于流动可视化的图形分析外,还在钻头上安装了流量计,以评估修改对流速的影响,以及可能增加的阻力和流体从切削刃外侧流向钻头其他部位的情况。参考设计的模拟结果显示了实验观察到的涡流形成,验证了模拟模型。在 SPH 模拟中加入了实验中因观察原因未包括的刀具旋转,对涡流的形成产生了积极影响。此外,一些设计显示了在保持切削刃周围有足够流体流动的同时进一步缓解涡流形成的良好效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling and mitigation of vortex formation in ejector deep hole drilling with smoothed particle hydrodynamics

Modeling and mitigation of vortex formation in ejector deep hole drilling with smoothed particle hydrodynamics

Ejector deep hole drilling achieves high-quality boreholes in production processes. High feed rates are applied to ensure a high productivity level, requiring reliable chip removal from the cutting zone for a stable process. Therefore, a constant metalworking fluid flow under high volume flow rates or high pressure is required. Experimental results show a vortex formation at the outer cutting edge. This vortex can lead to delayed chip removal from the cutting zone, and ultimately, it can lead to chip clogging and result in drill breakage due to increased torque. This paper investigates modified drill head designs using the smoothed particle hydrodynamics method. The investigated modifications include various designs of the chip mouth covering. Besides graphical analysis based on flow visualizations, flow meters are placed at the tool’s head to evaluate the impact of the modifications on the flow rate and possible increased resistance and relocation of the fluid flow from the outer cutting edge to other parts of the tool. The simulation results for the reference design show the experimentally observed vortex formation, validating the simulation model. By adding the tool’s rotation in the SPH simulation, which is not included in the experiments for observation reasons, the vortex formation is positively influenced. In addition, some designs show promising results to further mitigate the vortex formation while maintaining a sufficient fluid flow around the cutting edges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信