{"title":"熵滤波器的新型流水线结构","authors":"Dat Ngo, Bongsoon Kang","doi":"10.1007/s11554-024-01498-6","DOIUrl":null,"url":null,"abstract":"<p>In computer vision, entropy is a measure adopted to characterize the texture information of a grayscale image, and an entropy filter is a fundamental operation used to calculate local entropy. However, this filter is computationally intensive and demands an efficient means of implementation. Additionally, with the foreseeable end of Moore’s law, there is a growing trend towards hardware offloading to increase computing power. In line with this trend, we propose a novel method for the calculation of local entropy and introduce a corresponding pipelined architecture. Under the proposed method, a sliding window of pixels undergoes three steps: sorting, adjacent difference calculation, and pipelined entropy calculation. Compared with a conventional design, implementation results on a Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC device demonstrate that our pipelined architecture can reach a maximum throughput of handling 764.526 megapixels per second while achieving <span>\\(2.4\\times\\)</span> and <span>\\(2.9\\times\\)</span> reductions in resource utilization and <span>\\(1.1\\times\\)</span> reduction in power consumption.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel pipelined architecture of entropy filter\",\"authors\":\"Dat Ngo, Bongsoon Kang\",\"doi\":\"10.1007/s11554-024-01498-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In computer vision, entropy is a measure adopted to characterize the texture information of a grayscale image, and an entropy filter is a fundamental operation used to calculate local entropy. However, this filter is computationally intensive and demands an efficient means of implementation. Additionally, with the foreseeable end of Moore’s law, there is a growing trend towards hardware offloading to increase computing power. In line with this trend, we propose a novel method for the calculation of local entropy and introduce a corresponding pipelined architecture. Under the proposed method, a sliding window of pixels undergoes three steps: sorting, adjacent difference calculation, and pipelined entropy calculation. Compared with a conventional design, implementation results on a Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC device demonstrate that our pipelined architecture can reach a maximum throughput of handling 764.526 megapixels per second while achieving <span>\\\\(2.4\\\\times\\\\)</span> and <span>\\\\(2.9\\\\times\\\\)</span> reductions in resource utilization and <span>\\\\(1.1\\\\times\\\\)</span> reduction in power consumption.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01498-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01498-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
In computer vision, entropy is a measure adopted to characterize the texture information of a grayscale image, and an entropy filter is a fundamental operation used to calculate local entropy. However, this filter is computationally intensive and demands an efficient means of implementation. Additionally, with the foreseeable end of Moore’s law, there is a growing trend towards hardware offloading to increase computing power. In line with this trend, we propose a novel method for the calculation of local entropy and introduce a corresponding pipelined architecture. Under the proposed method, a sliding window of pixels undergoes three steps: sorting, adjacent difference calculation, and pipelined entropy calculation. Compared with a conventional design, implementation results on a Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC device demonstrate that our pipelined architecture can reach a maximum throughput of handling 764.526 megapixels per second while achieving \(2.4\times\) and \(2.9\times\) reductions in resource utilization and \(1.1\times\) reduction in power consumption.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.