TeleStroke:利用联合学习和 YOLOv8 在边缘设备上进行实时中风检测

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Abdussalam Elhanashi, Pierpaolo Dini, Sergio Saponara, Qinghe Zheng
{"title":"TeleStroke:利用联合学习和 YOLOv8 在边缘设备上进行实时中风检测","authors":"Abdussalam Elhanashi, Pierpaolo Dini, Sergio Saponara, Qinghe Zheng","doi":"10.1007/s11554-024-01500-1","DOIUrl":null,"url":null,"abstract":"<p>Stroke, a life-threatening medical condition, necessitates immediate intervention for optimal outcomes. Timely diagnosis and treatment play a crucial role in reducing mortality and minimizing long-term disabilities associated with strokes. This study presents a novel approach to meet these critical needs by proposing a real-time stroke detection system based on deep learning (DL) with utilization of federated learning (FL) to enhance accuracy and privacy preservation. The primary objective of this research is to develop an efficient and accurate model capable of discerning between stroke and non-stroke cases in real-time, facilitating healthcare professionals in making well-informed decisions. Traditional stroke detection methods relying on manual interpretation of medical images are time-consuming and prone to human error. DL techniques have shown promise in automating this process, yet challenges persist due to the need for extensive and diverse datasets and privacy concerns. To address these challenges, our methodology involves utilization and assessing YOLOv8 models on comprehensive datasets comprising both stroke and non-stroke based on the facial paralysis of the individuals from the images. This training process empowers the model to grasp intricate patterns and features associated with strokes, thereby enhancing its diagnostic accuracy. In addition, federated learning, a decentralized training approach, is employed to bolster privacy while preserving model performance. This approach enables the model to learn from data distributed across various clients without compromising sensitive patient information. The proposed methodology has been implemented on NVIDIA platforms, utilizing their advanced GPU capabilities to enable real-time processing and analysis. This optimized model has the potential to revolutionize stroke diagnosis and patient care, promising to save lives and elevate the quality of healthcare services in the neurology field.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TeleStroke: real-time stroke detection with federated learning and YOLOv8 on edge devices\",\"authors\":\"Abdussalam Elhanashi, Pierpaolo Dini, Sergio Saponara, Qinghe Zheng\",\"doi\":\"10.1007/s11554-024-01500-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stroke, a life-threatening medical condition, necessitates immediate intervention for optimal outcomes. Timely diagnosis and treatment play a crucial role in reducing mortality and minimizing long-term disabilities associated with strokes. This study presents a novel approach to meet these critical needs by proposing a real-time stroke detection system based on deep learning (DL) with utilization of federated learning (FL) to enhance accuracy and privacy preservation. The primary objective of this research is to develop an efficient and accurate model capable of discerning between stroke and non-stroke cases in real-time, facilitating healthcare professionals in making well-informed decisions. Traditional stroke detection methods relying on manual interpretation of medical images are time-consuming and prone to human error. DL techniques have shown promise in automating this process, yet challenges persist due to the need for extensive and diverse datasets and privacy concerns. To address these challenges, our methodology involves utilization and assessing YOLOv8 models on comprehensive datasets comprising both stroke and non-stroke based on the facial paralysis of the individuals from the images. This training process empowers the model to grasp intricate patterns and features associated with strokes, thereby enhancing its diagnostic accuracy. In addition, federated learning, a decentralized training approach, is employed to bolster privacy while preserving model performance. This approach enables the model to learn from data distributed across various clients without compromising sensitive patient information. The proposed methodology has been implemented on NVIDIA platforms, utilizing their advanced GPU capabilities to enable real-time processing and analysis. This optimized model has the potential to revolutionize stroke diagnosis and patient care, promising to save lives and elevate the quality of healthcare services in the neurology field.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01500-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01500-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

脑卒中是一种危及生命的疾病,必须立即进行干预才能取得最佳疗效。及时诊断和治疗在降低死亡率和减少与中风相关的长期残疾方面发挥着至关重要的作用。本研究提出了一种满足这些关键需求的新方法,即基于深度学习(DL)的实时中风检测系统,并利用联合学习(FL)来提高准确性和保护隐私。这项研究的主要目的是开发一种高效、准确的模型,能够实时分辨中风和非中风病例,帮助医疗保健专业人员做出明智的决策。传统的中风检测方法依赖人工解读医学图像,既费时又容易出现人为错误。DL 技术在实现这一过程的自动化方面已初见成效,但由于需要广泛多样的数据集和隐私问题,挑战依然存在。为了应对这些挑战,我们的方法包括在综合数据集上使用 YOLOv8 模型并对其进行评估,这些数据集包括中风和非中风,基于图像中个人的面部瘫痪情况。这一训练过程使模型能够掌握与中风相关的复杂模式和特征,从而提高其诊断准确性。此外,联合学习是一种分散式训练方法,可在保护模型性能的同时保护隐私。这种方法使模型能够从分布在不同客户端的数据中学习,而不会泄露敏感的患者信息。所提出的方法已在英伟达™(NVIDIA®)平台上实施,利用其先进的 GPU 功能实现了实时处理和分析。这一优化模型有望彻底改变中风诊断和患者护理,挽救生命并提高神经病学领域的医疗服务质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TeleStroke: real-time stroke detection with federated learning and YOLOv8 on edge devices

TeleStroke: real-time stroke detection with federated learning and YOLOv8 on edge devices

Stroke, a life-threatening medical condition, necessitates immediate intervention for optimal outcomes. Timely diagnosis and treatment play a crucial role in reducing mortality and minimizing long-term disabilities associated with strokes. This study presents a novel approach to meet these critical needs by proposing a real-time stroke detection system based on deep learning (DL) with utilization of federated learning (FL) to enhance accuracy and privacy preservation. The primary objective of this research is to develop an efficient and accurate model capable of discerning between stroke and non-stroke cases in real-time, facilitating healthcare professionals in making well-informed decisions. Traditional stroke detection methods relying on manual interpretation of medical images are time-consuming and prone to human error. DL techniques have shown promise in automating this process, yet challenges persist due to the need for extensive and diverse datasets and privacy concerns. To address these challenges, our methodology involves utilization and assessing YOLOv8 models on comprehensive datasets comprising both stroke and non-stroke based on the facial paralysis of the individuals from the images. This training process empowers the model to grasp intricate patterns and features associated with strokes, thereby enhancing its diagnostic accuracy. In addition, federated learning, a decentralized training approach, is employed to bolster privacy while preserving model performance. This approach enables the model to learn from data distributed across various clients without compromising sensitive patient information. The proposed methodology has been implemented on NVIDIA platforms, utilizing their advanced GPU capabilities to enable real-time processing and analysis. This optimized model has the potential to revolutionize stroke diagnosis and patient care, promising to save lives and elevate the quality of healthcare services in the neurology field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Real-Time Image Processing
Journal of Real-Time Image Processing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
6.80
自引率
6.70%
发文量
68
审稿时长
6 months
期刊介绍: Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed. Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application. It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system. The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信