{"title":"希尔伯特赫克特征形式的兰金-科恩括号","authors":"Yichao Zhang, Yang Zhou","doi":"10.1007/s11139-024-00883-w","DOIUrl":null,"url":null,"abstract":"<p>Over any fixed totally real number field with narrow class number one, we prove that the Rankin–Cohen bracket of two Hecke eigenforms for the Hilbert modular group can only be a Hecke eigenform for dimension reasons, except for a couple of cases where the Rankin–Selberg method does not apply. We shall also prove a conjecture of Freitag on the volume of Hilbert modular groups, and assuming a conjecture of Freitag on the dimension of the cuspform space, we obtain a finiteness result on eigenform product identities.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rankin–Cohen brackets of Hilbert Hecke eigenforms\",\"authors\":\"Yichao Zhang, Yang Zhou\",\"doi\":\"10.1007/s11139-024-00883-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over any fixed totally real number field with narrow class number one, we prove that the Rankin–Cohen bracket of two Hecke eigenforms for the Hilbert modular group can only be a Hecke eigenform for dimension reasons, except for a couple of cases where the Rankin–Selberg method does not apply. We shall also prove a conjecture of Freitag on the volume of Hilbert modular groups, and assuming a conjecture of Freitag on the dimension of the cuspform space, we obtain a finiteness result on eigenform product identities.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00883-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00883-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Over any fixed totally real number field with narrow class number one, we prove that the Rankin–Cohen bracket of two Hecke eigenforms for the Hilbert modular group can only be a Hecke eigenform for dimension reasons, except for a couple of cases where the Rankin–Selberg method does not apply. We shall also prove a conjecture of Freitag on the volume of Hilbert modular groups, and assuming a conjecture of Freitag on the dimension of the cuspform space, we obtain a finiteness result on eigenform product identities.