{"title":"舒尔多重zeta值的积分表达式","authors":"","doi":"10.1016/j.indag.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><div>Nakasuji, Phuksuwan, and Yamasaki defined the Schur multiple zeta values and gave iterated integral expressions of the Schur multiple zeta values of the ribbon type. This paper generalizes their integral expressions to the ones of more general Schur multiple zeta values having constant entries on the diagonals. Furthermore, we also discuss the duality relations for Schur multiple zeta values obtained from the integral expressions.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral expressions for Schur multiple zeta values\",\"authors\":\"\",\"doi\":\"10.1016/j.indag.2024.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nakasuji, Phuksuwan, and Yamasaki defined the Schur multiple zeta values and gave iterated integral expressions of the Schur multiple zeta values of the ribbon type. This paper generalizes their integral expressions to the ones of more general Schur multiple zeta values having constant entries on the diagonals. Furthermore, we also discuss the duality relations for Schur multiple zeta values obtained from the integral expressions.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000600\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000600","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Integral expressions for Schur multiple zeta values
Nakasuji, Phuksuwan, and Yamasaki defined the Schur multiple zeta values and gave iterated integral expressions of the Schur multiple zeta values of the ribbon type. This paper generalizes their integral expressions to the ones of more general Schur multiple zeta values having constant entries on the diagonals. Furthermore, we also discuss the duality relations for Schur multiple zeta values obtained from the integral expressions.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.