$$\mathbb{R}^2$$中具有连续共线位数的自参量的非谱问题

Pub Date : 2024-06-18 DOI:10.1007/s10476-024-00033-w
J. Su, S. Wu
{"title":"$$\\mathbb{R}^2$$中具有连续共线位数的自参量的非谱问题","authors":"J. Su,&nbsp;S. Wu","doi":"10.1007/s10476-024-00033-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mu_{M,D}\\)</span> be the planar self-affine measure generated by an expanding integer matrix <span>\\(M\\in M_2(\\mathbb{Z})\\)</span> and an integer digit set <span>\\(D=\\{0,1,\\dots,q-1\\}v\\)</span> with <span>\\(v\\in\\mathbb{Z}^2\\setminus\\{0\\}\\)</span>, where <span>\\(\\gcd(\\det(M),q)=1\\)</span> and <span>\\(q\\ge 2\\)</span> is an integer. If the characteristic polynomial of <span>\\(M\\)</span> is <span>\\(f(x)=x^2+\\det(M)\\)</span> and <span>\\(\\{v, Mv\\}\\)</span> is linearly independent, we show that there exist at most <span>\\(q^2\\)</span> mutually orthogonal exponential functions in <span>\\(L^2(\\mu_{M,D})\\)</span>, and the number <span>\\(q^2\\)</span> is the best. In particular, we further give a complete description for the case <span>\\(M= {\\rm diag}(s, t)\\)</span>\nwith <span>\\(\\gcd(st, q)=1\\)</span>. This extends the results of Wei and Zhang [24].\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-spectral problem of self-affine measures with consecutive collinear digits in \\\\(\\\\mathbb{R}^2\\\\)\",\"authors\":\"J. Su,&nbsp;S. Wu\",\"doi\":\"10.1007/s10476-024-00033-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mu_{M,D}\\\\)</span> be the planar self-affine measure generated by an expanding integer matrix <span>\\\\(M\\\\in M_2(\\\\mathbb{Z})\\\\)</span> and an integer digit set <span>\\\\(D=\\\\{0,1,\\\\dots,q-1\\\\}v\\\\)</span> with <span>\\\\(v\\\\in\\\\mathbb{Z}^2\\\\setminus\\\\{0\\\\}\\\\)</span>, where <span>\\\\(\\\\gcd(\\\\det(M),q)=1\\\\)</span> and <span>\\\\(q\\\\ge 2\\\\)</span> is an integer. If the characteristic polynomial of <span>\\\\(M\\\\)</span> is <span>\\\\(f(x)=x^2+\\\\det(M)\\\\)</span> and <span>\\\\(\\\\{v, Mv\\\\}\\\\)</span> is linearly independent, we show that there exist at most <span>\\\\(q^2\\\\)</span> mutually orthogonal exponential functions in <span>\\\\(L^2(\\\\mu_{M,D})\\\\)</span>, and the number <span>\\\\(q^2\\\\)</span> is the best. In particular, we further give a complete description for the case <span>\\\\(M= {\\\\rm diag}(s, t)\\\\)</span>\\nwith <span>\\\\(\\\\gcd(st, q)=1\\\\)</span>. This extends the results of Wei and Zhang [24].\\n</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00033-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00033-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\mu_{M,D}\)是由扩展整数矩阵 \(M\in M_2(\mathbb{Z})\) 和整数数位集 \(D=\{0、v),其中(gcd(\det(M),q)=1)和(qge 2)是整数。如果\(M\)的特征多项式是\(f(x)=x^2+\det(M)\)并且\({v, Mv\}) 是线性独立的,我们证明在\(L^2(\mu_{M,D})\)中最多存在\(q^2\)个相互正交的指数函数,并且数\(q^2\)是最好的。特别是,我们进一步给出了具有 \(\gcd(st, q)=1\) 的情况下 \(M= {\rm diag}(s, t)\的完整描述。)这扩展了 Wei 和 Zhang [24] 的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Non-spectral problem of self-affine measures with consecutive collinear digits in \(\mathbb{R}^2\)

Let \(\mu_{M,D}\) be the planar self-affine measure generated by an expanding integer matrix \(M\in M_2(\mathbb{Z})\) and an integer digit set \(D=\{0,1,\dots,q-1\}v\) with \(v\in\mathbb{Z}^2\setminus\{0\}\), where \(\gcd(\det(M),q)=1\) and \(q\ge 2\) is an integer. If the characteristic polynomial of \(M\) is \(f(x)=x^2+\det(M)\) and \(\{v, Mv\}\) is linearly independent, we show that there exist at most \(q^2\) mutually orthogonal exponential functions in \(L^2(\mu_{M,D})\), and the number \(q^2\) is the best. In particular, we further give a complete description for the case \(M= {\rm diag}(s, t)\) with \(\gcd(st, q)=1\). This extends the results of Wei and Zhang [24].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信