考虑输入约束和全局规定性能的 2-DOF 直升机系统的自适应神经网络控制

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhijia Zhao, Jiale Wu, Zhijie Liu, We He, C. L. Philip Chen
{"title":"考虑输入约束和全局规定性能的 2-DOF 直升机系统的自适应神经网络控制","authors":"Zhijia Zhao, Jiale Wu, Zhijie Liu, We He, C. L. Philip Chen","doi":"10.1007/s11432-023-3949-3","DOIUrl":null,"url":null,"abstract":"<p>In this study, an adaptive neural network (NN) control is proposed for nonlinear two-degree-of-freedom (2-DOF) helicopter systems considering the input constraints and global prescribed performance. First, radial basis function NN (RBFNN) is employed to estimate the unknown dynamics of the helicopter system. Second, a smooth nonaffine function is exploited to approximate and address nonlinear constraint functions. Subsequently, a new prescribed function is proposed, and an original constrained error is transformed into an equivalent unconstrained error using the error transformation and barrier function transformation methods. The analysis of the established Lyapunov function proves that the controlled system is globally uniformly bounded. Finally, the simulation and experimental results on a constructed Quanser’s test platform verify the rationality and feasibility of the proposed control.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"34 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive neural network control of a 2-DOF helicopter system considering input constraints and global prescribed performance\",\"authors\":\"Zhijia Zhao, Jiale Wu, Zhijie Liu, We He, C. L. Philip Chen\",\"doi\":\"10.1007/s11432-023-3949-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, an adaptive neural network (NN) control is proposed for nonlinear two-degree-of-freedom (2-DOF) helicopter systems considering the input constraints and global prescribed performance. First, radial basis function NN (RBFNN) is employed to estimate the unknown dynamics of the helicopter system. Second, a smooth nonaffine function is exploited to approximate and address nonlinear constraint functions. Subsequently, a new prescribed function is proposed, and an original constrained error is transformed into an equivalent unconstrained error using the error transformation and barrier function transformation methods. The analysis of the established Lyapunov function proves that the controlled system is globally uniformly bounded. Finally, the simulation and experimental results on a constructed Quanser’s test platform verify the rationality and feasibility of the proposed control.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-023-3949-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-3949-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究针对非线性二自由度(2-DOF)直升机系统提出了一种自适应神经网络(NN)控制方法,其中考虑到了输入约束和全局规定性能。首先,采用径向基函数 NN(RBFNN)来估计直升机系统的未知动态。其次,利用平滑非阿芬函数来近似和处理非线性约束函数。随后,提出了一种新的规定函数,并利用误差变换和障碍函数变换方法将原始受限误差转换为等效无约束误差。对已建立的 Lyapunov 函数的分析证明,受控系统是全局均匀有界的。最后,在构建的 Quanser 测试平台上的仿真和实验结果验证了所提控制方法的合理性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive neural network control of a 2-DOF helicopter system considering input constraints and global prescribed performance

In this study, an adaptive neural network (NN) control is proposed for nonlinear two-degree-of-freedom (2-DOF) helicopter systems considering the input constraints and global prescribed performance. First, radial basis function NN (RBFNN) is employed to estimate the unknown dynamics of the helicopter system. Second, a smooth nonaffine function is exploited to approximate and address nonlinear constraint functions. Subsequently, a new prescribed function is proposed, and an original constrained error is transformed into an equivalent unconstrained error using the error transformation and barrier function transformation methods. The analysis of the established Lyapunov function proves that the controlled system is globally uniformly bounded. Finally, the simulation and experimental results on a constructed Quanser’s test platform verify the rationality and feasibility of the proposed control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信