Bouharket Benaissa, Noureddine Azzouz, Hüseyin Budak
{"title":"h-凸函数新条件的加权分数不等式","authors":"Bouharket Benaissa, Noureddine Azzouz, Hüseyin Budak","doi":"10.1186/s13661-024-01889-5","DOIUrl":null,"url":null,"abstract":"We use a new function class called B-function to establish a novel version of Hermite–Hadamard inequality for weighted ψ-Hilfer operators. Additionally, we prove two new identities involving weighted ψ-Hilfer operators for differentiable functions. Moreover, by employing these equalities and the properties of the B-function, we derive several trapezoid- and midpoint-type inequalities for h-convex functions. Furthermore, the obtained results are reduced to several well-known and some new inequalities by making specific choices of the function h.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted fractional inequalities for new conditions on h-convex functions\",\"authors\":\"Bouharket Benaissa, Noureddine Azzouz, Hüseyin Budak\",\"doi\":\"10.1186/s13661-024-01889-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a new function class called B-function to establish a novel version of Hermite–Hadamard inequality for weighted ψ-Hilfer operators. Additionally, we prove two new identities involving weighted ψ-Hilfer operators for differentiable functions. Moreover, by employing these equalities and the properties of the B-function, we derive several trapezoid- and midpoint-type inequalities for h-convex functions. Furthermore, the obtained results are reduced to several well-known and some new inequalities by making specific choices of the function h.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01889-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01889-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
我们利用一个名为 B 函数的新函数类别,为加权ψ-希尔费算子建立了一个新版本的赫米特-哈达马德不等式。此外,我们还证明了涉及可微分函数的加权ψ-希尔费算子的两个新等式。此外,通过利用这些等式和 B 函数的性质,我们推导出了 h 凸函数的几个梯形和中点类型不等式。此外,通过对函数 h 的特定选择,所得到的结果被简化为几个著名的不等式和一些新的不等式。
Weighted fractional inequalities for new conditions on h-convex functions
We use a new function class called B-function to establish a novel version of Hermite–Hadamard inequality for weighted ψ-Hilfer operators. Additionally, we prove two new identities involving weighted ψ-Hilfer operators for differentiable functions. Moreover, by employing these equalities and the properties of the B-function, we derive several trapezoid- and midpoint-type inequalities for h-convex functions. Furthermore, the obtained results are reduced to several well-known and some new inequalities by making specific choices of the function h.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.