具有准封闭条件的包装球

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andreas Fischer, Igor Litvinchev, Tetyana Romanova, Petro Stetsyuk, Georgiy Yaskov
{"title":"具有准封闭条件的包装球","authors":"Andreas Fischer, Igor Litvinchev, Tetyana Romanova, Petro Stetsyuk, Georgiy Yaskov","doi":"10.1007/s10898-024-01412-1","DOIUrl":null,"url":null,"abstract":"<p>A novel sphere packing problem is introduced. A maximum number of spheres of different radii should be placed such that the spheres do not overlap and their centers fulfill a quasi-containment condition. The latter allows the spheres to lie partially outside the given cuboidal container. Moreover, specified ratios between the placed spheres of different radii must be satisfied. A corresponding mixed-integer nonlinear programming model is formulated. It enables the exact solution of small instances. For larger instances, a heuristic strategy is proposed, which relies on techniques for the generation of feasible points and the decomposition of open dimension problems. Numerical results are presented to demonstrate the viability of the approach.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Packing spheres with quasi-containment conditions\",\"authors\":\"Andreas Fischer, Igor Litvinchev, Tetyana Romanova, Petro Stetsyuk, Georgiy Yaskov\",\"doi\":\"10.1007/s10898-024-01412-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel sphere packing problem is introduced. A maximum number of spheres of different radii should be placed such that the spheres do not overlap and their centers fulfill a quasi-containment condition. The latter allows the spheres to lie partially outside the given cuboidal container. Moreover, specified ratios between the placed spheres of different radii must be satisfied. A corresponding mixed-integer nonlinear programming model is formulated. It enables the exact solution of small instances. For larger instances, a heuristic strategy is proposed, which relies on techniques for the generation of feasible points and the decomposition of open dimension problems. Numerical results are presented to demonstrate the viability of the approach.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01412-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01412-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个新颖的球体堆积问题。最大数量的不同半径的球体应放置在一起,使球体不重叠,且球体中心满足准包含条件。后者允许球体部分位于给定的长方体容器之外。此外,放置的不同半径球体之间必须满足指定的比率。我们制定了一个相应的混合整数非线性编程模型。该模型可以精确求解小型实例。对于较大的实例,提出了一种启发式策略,该策略依赖于生成可行点和分解开放维度问题的技术。数值结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Packing spheres with quasi-containment conditions

Packing spheres with quasi-containment conditions

A novel sphere packing problem is introduced. A maximum number of spheres of different radii should be placed such that the spheres do not overlap and their centers fulfill a quasi-containment condition. The latter allows the spheres to lie partially outside the given cuboidal container. Moreover, specified ratios between the placed spheres of different radii must be satisfied. A corresponding mixed-integer nonlinear programming model is formulated. It enables the exact solution of small instances. For larger instances, a heuristic strategy is proposed, which relies on techniques for the generation of feasible points and the decomposition of open dimension problems. Numerical results are presented to demonstrate the viability of the approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信