{"title":"平均凸三网格中自由边界最小盘的刚性","authors":"Rondinelle Batista, Barnabé Lima, João Silva","doi":"10.1007/s12220-024-01727-1","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this article is to study rigidity of free boundary minimal two-disks that locally maximize the modified Hawking mass on a Riemannian three-manifold with a positive lower bound on its scalar curvature and mean convex boundary. Assuming the strict stability of <span>\\(\\Sigma \\)</span>, we prove that a neighborhood of it in <i>M</i> is isometric to one of the half de Sitter–Schwarzschild space.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity of Free Boundary Minimal Disks in Mean Convex Three-Manifolds\",\"authors\":\"Rondinelle Batista, Barnabé Lima, João Silva\",\"doi\":\"10.1007/s12220-024-01727-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this article is to study rigidity of free boundary minimal two-disks that locally maximize the modified Hawking mass on a Riemannian three-manifold with a positive lower bound on its scalar curvature and mean convex boundary. Assuming the strict stability of <span>\\\\(\\\\Sigma \\\\)</span>, we prove that a neighborhood of it in <i>M</i> is isometric to one of the half de Sitter–Schwarzschild space.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01727-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01727-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rigidity of Free Boundary Minimal Disks in Mean Convex Three-Manifolds
The purpose of this article is to study rigidity of free boundary minimal two-disks that locally maximize the modified Hawking mass on a Riemannian three-manifold with a positive lower bound on its scalar curvature and mean convex boundary. Assuming the strict stability of \(\Sigma \), we prove that a neighborhood of it in M is isometric to one of the half de Sitter–Schwarzschild space.