{"title":"诺德斯特伦-弗拉索夫系统弱解的性质","authors":"Meixia Xiao","doi":"10.1063/5.0150177","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the Nordström–Vlasov system in the whole space. The kinetic model is a relativistic generalization of the classical Vlasov–Poisson system in the gravitational case and describes the ensemble motion of collisionless particles interacting by means of a self-consistent scalar gravitational field. With the Fourier analysis and the smoothing effect of low velocity particles, we get a better regularity of weak solutions for the field than the one proved by Calogero and Rein [J. Differ. Equ. 204, 323 (2004)]. Meanwhile, under the additional integrability condition, we establish the energy conservation of the weak solution.","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of weak solutions to the Nordström–Vlasov system\",\"authors\":\"Meixia Xiao\",\"doi\":\"10.1063/5.0150177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the Nordström–Vlasov system in the whole space. The kinetic model is a relativistic generalization of the classical Vlasov–Poisson system in the gravitational case and describes the ensemble motion of collisionless particles interacting by means of a self-consistent scalar gravitational field. With the Fourier analysis and the smoothing effect of low velocity particles, we get a better regularity of weak solutions for the field than the one proved by Calogero and Rein [J. Differ. Equ. 204, 323 (2004)]. Meanwhile, under the additional integrability condition, we establish the energy conservation of the weak solution.\",\"PeriodicalId\":16174,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0150177\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0150177","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了整个空间中的诺德斯特伦-弗拉索夫系统。该动力学模型是经典弗拉索夫-泊松系统在引力情况下的相对论广义化,通过自洽标量引力场描述了相互作用的无碰撞粒子的集合运动。通过傅立叶分析和低速粒子的平滑效应,我们得到了比 Calogero 和 Rein [J. Differ. Equ. 204, 323 (2004)]证明的更好的场弱解的正则性。同时,在附加的可整性条件下,我们建立了弱解的能量守恒。
Properties of weak solutions to the Nordström–Vlasov system
In this article, we investigate the Nordström–Vlasov system in the whole space. The kinetic model is a relativistic generalization of the classical Vlasov–Poisson system in the gravitational case and describes the ensemble motion of collisionless particles interacting by means of a self-consistent scalar gravitational field. With the Fourier analysis and the smoothing effect of low velocity particles, we get a better regularity of weak solutions for the field than the one proved by Calogero and Rein [J. Differ. Equ. 204, 323 (2004)]. Meanwhile, under the additional integrability condition, we establish the energy conservation of the weak solution.
期刊介绍:
Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories.
The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community.
JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following:
Partial Differential Equations
Representation Theory and Algebraic Methods
Many Body and Condensed Matter Physics
Quantum Mechanics - General and Nonrelativistic
Quantum Information and Computation
Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory
General Relativity and Gravitation
Dynamical Systems
Classical Mechanics and Classical Fields
Fluids
Statistical Physics
Methods of Mathematical Physics.