{"title":"离散周期薛定谔算子零势的 Floquet 等谱性","authors":"Matthew Faust, Wencai Liu, Rodrigo Matos, Jenna Plute, Jonah Robinson, Yichen Tao, Ethan Tran, Cindy Zhuang","doi":"10.1063/5.0201744","DOIUrl":null,"url":null,"abstract":"Let Γ=q1Z⊕q2Z⊕⋯⊕qdZ, with qj∈Z+ for each j ∈ {1, …, d}, and denote by Δ the discrete Laplacian on ℓ2Zd. Using Macaulay2, we first numerically find complex-valued Γ-periodic potentials V:Zd→C such that the operators Δ + V and Δ are Floquet isospectral. We then use combinatorial methods to validate these numerical solutions.","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":"60 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Floquet isospectrality of the zero potential for discrete periodic Schrödinger operators\",\"authors\":\"Matthew Faust, Wencai Liu, Rodrigo Matos, Jenna Plute, Jonah Robinson, Yichen Tao, Ethan Tran, Cindy Zhuang\",\"doi\":\"10.1063/5.0201744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Γ=q1Z⊕q2Z⊕⋯⊕qdZ, with qj∈Z+ for each j ∈ {1, …, d}, and denote by Δ the discrete Laplacian on ℓ2Zd. Using Macaulay2, we first numerically find complex-valued Γ-periodic potentials V:Zd→C such that the operators Δ + V and Δ are Floquet isospectral. We then use combinatorial methods to validate these numerical solutions.\",\"PeriodicalId\":16174,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0201744\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0201744","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Floquet isospectrality of the zero potential for discrete periodic Schrödinger operators
Let Γ=q1Z⊕q2Z⊕⋯⊕qdZ, with qj∈Z+ for each j ∈ {1, …, d}, and denote by Δ the discrete Laplacian on ℓ2Zd. Using Macaulay2, we first numerically find complex-valued Γ-periodic potentials V:Zd→C such that the operators Δ + V and Δ are Floquet isospectral. We then use combinatorial methods to validate these numerical solutions.
期刊介绍:
Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories.
The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community.
JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following:
Partial Differential Equations
Representation Theory and Algebraic Methods
Many Body and Condensed Matter Physics
Quantum Mechanics - General and Nonrelativistic
Quantum Information and Computation
Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory
General Relativity and Gravitation
Dynamical Systems
Classical Mechanics and Classical Fields
Fluids
Statistical Physics
Methods of Mathematical Physics.