预测质子束射程和被动散射模式下布拉格峰扩散的深度学习方法

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Young Kyu Lee, Sang Hee Ahn, Chankyu Kim, Wonjoong Cheon, Haksoo Kim, Se Byeong Lee, Young Kyung Lim, Jong Hwi Jeong, Young-Nam Kang, Dongho Shin
{"title":"预测质子束射程和被动散射模式下布拉格峰扩散的深度学习方法","authors":"Young Kyu Lee,&nbsp;Sang Hee Ahn,&nbsp;Chankyu Kim,&nbsp;Wonjoong Cheon,&nbsp;Haksoo Kim,&nbsp;Se Byeong Lee,&nbsp;Young Kyung Lim,&nbsp;Jong Hwi Jeong,&nbsp;Young-Nam Kang,&nbsp;Dongho Shin","doi":"10.1007/s40042-024-01082-y","DOIUrl":null,"url":null,"abstract":"<div><p>It is difficult to calculate monitor units in the proton treatment planning system due to the complexity of using this system in the double scattering mode of proton therapy. Moreover, the range and spread-out Bragg peak (SOBP) values using the conversion algorithm (CONVALGO) provided by IBA (<span>\\({C}_{{\\text{range}}}\\)</span>, <span>\\({C}_{{\\text{SOBP}}}\\)</span>) are different from the actual measured range (<span>\\({M}_{{\\text{range}}})\\)</span> and SOBP (<span>\\({M}_{{\\text{SOBP}}}\\)</span>) values. In this regard, the CONVALGO (FC) value (<span>\\({FC}_{{\\text{range}}}\\)</span>, <span>\\({FC}_{{\\text{SOBP}}})\\)</span> should be measured according to the quality assurance (QA) of patient treatment, which requires physical effort and time. This study, therefore, aimed to reduce the time and effort spent on QA. The predictive model was trained using six parameters. Main option, sub-option, <span>\\({M}_{{\\text{range}}}\\)</span> and <span>\\({M}_{{\\text{SOBP}}}\\)</span> were used as input values, and <span>\\({FC}_{{\\text{range}}}\\)</span> and <span>\\({FC}_{{\\text{SOBP}}}\\)</span> were used as label. The trained model predicted the CONVALGO (PC) values of <span>\\({PC}_{{\\text{range}}}\\)</span> and <span>\\({PC}_{{\\text{SOBP}}}\\)</span>. The test dataset has 261 patient data that were not used for training. Difference, mean absolute error (MAE), and root mean square error (RMSE) values were used for comparison. Compared to the FC value, the maximum difference was − 2.2 mm for <span>\\({PC}_{{\\text{range}}}\\)</span> and − 3.4 mm for <span>\\({C}_{{\\text{range}}}\\)</span>. The acceptable standard of patient QA in our institute is within 1 mm and the number of data points that met the acceptable standard was 196 for <span>\\({PC}_{{\\text{range}}}\\)</span> and 191 for <span>\\({C}_{{\\text{range}}}\\)</span>. For the MAE of <span>\\({PC}_{{\\text{SOBP}}}\\)</span>, options 1, 2, and 3 showed values within 1 mm. In the MAE of <span>\\({C}_{{\\text{SOBP}}}\\)</span>, the values were &gt; 1 mm for all options.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 3","pages":"256 - 266"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning method for predicting proton beam range and spread-out Bragg peak in passive scattering mode\",\"authors\":\"Young Kyu Lee,&nbsp;Sang Hee Ahn,&nbsp;Chankyu Kim,&nbsp;Wonjoong Cheon,&nbsp;Haksoo Kim,&nbsp;Se Byeong Lee,&nbsp;Young Kyung Lim,&nbsp;Jong Hwi Jeong,&nbsp;Young-Nam Kang,&nbsp;Dongho Shin\",\"doi\":\"10.1007/s40042-024-01082-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is difficult to calculate monitor units in the proton treatment planning system due to the complexity of using this system in the double scattering mode of proton therapy. Moreover, the range and spread-out Bragg peak (SOBP) values using the conversion algorithm (CONVALGO) provided by IBA (<span>\\\\({C}_{{\\\\text{range}}}\\\\)</span>, <span>\\\\({C}_{{\\\\text{SOBP}}}\\\\)</span>) are different from the actual measured range (<span>\\\\({M}_{{\\\\text{range}}})\\\\)</span> and SOBP (<span>\\\\({M}_{{\\\\text{SOBP}}}\\\\)</span>) values. In this regard, the CONVALGO (FC) value (<span>\\\\({FC}_{{\\\\text{range}}}\\\\)</span>, <span>\\\\({FC}_{{\\\\text{SOBP}}})\\\\)</span> should be measured according to the quality assurance (QA) of patient treatment, which requires physical effort and time. This study, therefore, aimed to reduce the time and effort spent on QA. The predictive model was trained using six parameters. Main option, sub-option, <span>\\\\({M}_{{\\\\text{range}}}\\\\)</span> and <span>\\\\({M}_{{\\\\text{SOBP}}}\\\\)</span> were used as input values, and <span>\\\\({FC}_{{\\\\text{range}}}\\\\)</span> and <span>\\\\({FC}_{{\\\\text{SOBP}}}\\\\)</span> were used as label. The trained model predicted the CONVALGO (PC) values of <span>\\\\({PC}_{{\\\\text{range}}}\\\\)</span> and <span>\\\\({PC}_{{\\\\text{SOBP}}}\\\\)</span>. The test dataset has 261 patient data that were not used for training. Difference, mean absolute error (MAE), and root mean square error (RMSE) values were used for comparison. Compared to the FC value, the maximum difference was − 2.2 mm for <span>\\\\({PC}_{{\\\\text{range}}}\\\\)</span> and − 3.4 mm for <span>\\\\({C}_{{\\\\text{range}}}\\\\)</span>. The acceptable standard of patient QA in our institute is within 1 mm and the number of data points that met the acceptable standard was 196 for <span>\\\\({PC}_{{\\\\text{range}}}\\\\)</span> and 191 for <span>\\\\({C}_{{\\\\text{range}}}\\\\)</span>. For the MAE of <span>\\\\({PC}_{{\\\\text{SOBP}}}\\\\)</span>, options 1, 2, and 3 showed values within 1 mm. In the MAE of <span>\\\\({C}_{{\\\\text{SOBP}}}\\\\)</span>, the values were &gt; 1 mm for all options.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":\"85 3\",\"pages\":\"256 - 266\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01082-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01082-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于在质子治疗的双散射模式下使用质子治疗计划系统的复杂性,在该系统中很难计算监测单位。此外,使用 IBA 提供的转换算法(CONVALGO)得出的射程值和展散布拉格峰(SOBP)值(\({C}_{\text{range}}}\), \({C}_{text{SOBP}}}\))与实际测量的射程值(\({M}_{text{range}})\)和展散布拉格峰(SOBP)值(\({M}_{\text{SOBP}}\))不同。在这方面,CONVALGO(FC)值(\({FC}_{\text{range}}}\), \({FC}_{text{SOBP}}})应根据患者治疗的质量保证(QA)进行测量,这需要体力和时间。因此,本研究旨在减少 QA 所花费的时间和精力。使用六个参数对预测模型进行了训练。主选项、子选项、\({M}_{\text{range}}}\)和\({M}_{text{SOBP}}\)作为输入值,\({FC}_{\text{range}}\)和\({FC}_{text{SOBP}}\)作为标签。训练后的模型预测了 \({PC}_{\{text{range}}}\) 和 \({PC}_{{text\{SOBP}}}\) 的 CONVALGO (PC) 值。测试数据集包含 261 个未用于训练的患者数据。差值、平均绝对误差(MAE)和均方根误差(RMSE)值用于比较。与 FC 值相比,\({PC}_{text{range}}\) 的最大差值为 - 2.2 mm,\({C}_{text{range}}\) 的最大差值为 - 3.4 mm。在我院,患者质量保证的可接受标准是 1 毫米以内,符合可接受标准的数据点数为:({PC}_{text{range}})196 个,({C}_{text{range}})191 个。对于\({PC}_{text/{SOBP}}\)的 MAE,选项 1、2 和 3 显示的值都在 1 毫米以内。在 \({C}_{text\{SOBP}} 的 MAE 中,所有选项的值都在 1 毫米以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A deep learning method for predicting proton beam range and spread-out Bragg peak in passive scattering mode

A deep learning method for predicting proton beam range and spread-out Bragg peak in passive scattering mode

A deep learning method for predicting proton beam range and spread-out Bragg peak in passive scattering mode

It is difficult to calculate monitor units in the proton treatment planning system due to the complexity of using this system in the double scattering mode of proton therapy. Moreover, the range and spread-out Bragg peak (SOBP) values using the conversion algorithm (CONVALGO) provided by IBA (\({C}_{{\text{range}}}\), \({C}_{{\text{SOBP}}}\)) are different from the actual measured range (\({M}_{{\text{range}}})\) and SOBP (\({M}_{{\text{SOBP}}}\)) values. In this regard, the CONVALGO (FC) value (\({FC}_{{\text{range}}}\), \({FC}_{{\text{SOBP}}})\) should be measured according to the quality assurance (QA) of patient treatment, which requires physical effort and time. This study, therefore, aimed to reduce the time and effort spent on QA. The predictive model was trained using six parameters. Main option, sub-option, \({M}_{{\text{range}}}\) and \({M}_{{\text{SOBP}}}\) were used as input values, and \({FC}_{{\text{range}}}\) and \({FC}_{{\text{SOBP}}}\) were used as label. The trained model predicted the CONVALGO (PC) values of \({PC}_{{\text{range}}}\) and \({PC}_{{\text{SOBP}}}\). The test dataset has 261 patient data that were not used for training. Difference, mean absolute error (MAE), and root mean square error (RMSE) values were used for comparison. Compared to the FC value, the maximum difference was − 2.2 mm for \({PC}_{{\text{range}}}\) and − 3.4 mm for \({C}_{{\text{range}}}\). The acceptable standard of patient QA in our institute is within 1 mm and the number of data points that met the acceptable standard was 196 for \({PC}_{{\text{range}}}\) and 191 for \({C}_{{\text{range}}}\). For the MAE of \({PC}_{{\text{SOBP}}}\), options 1, 2, and 3 showed values within 1 mm. In the MAE of \({C}_{{\text{SOBP}}}\), the values were > 1 mm for all options.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean Physical Society
Journal of the Korean Physical Society PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.20
自引率
16.70%
发文量
276
审稿时长
5.5 months
期刊介绍: The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信