Adam Nelson, Wassilios Papawassiliou, Subhradip Paul, Sabine Hediger, Ivan Hung, Zhehong Gan, Amrit Venkatesh, W. Trent Trent Franks, Mark Edmund E Smith, David Gajan, Gaël De Paëpe, Christian Bonhomme, Danielle Laurencin, Christel Gervais
{"title":"温度诱导的磷酸八钙流动性对晶体对称性的影响:核磁共振晶体学研究的水动力学","authors":"Adam Nelson, Wassilios Papawassiliou, Subhradip Paul, Sabine Hediger, Ivan Hung, Zhehong Gan, Amrit Venkatesh, W. Trent Trent Franks, Mark Edmund E Smith, David Gajan, Gaël De Paëpe, Christian Bonhomme, Danielle Laurencin, Christel Gervais","doi":"10.1039/d4fd00108g","DOIUrl":null,"url":null,"abstract":"Octacalcium phosphate (OCP, Ca<small><sub>8</sub></small>(PO<small><sub>4</sub></small>)<small><sub>4</sub></small>(HPO<small><sub>4</sub></small>)<small><sub>2</sub></small>.5H<small><sub>2</sub></small>O) is a notable calcium phosphate due to its biocompatibility, making it a widely studied material for bone substitution. It is known to be a precursor of bone mineral, but its role in biomineralisation remains unclear. While the structure of OCP has been the subject of thorough investigations (including using Rietveld refinements of X-ray diffraction data, and NMR crystallography studies), important questions regarding the symmetry and H-bonding network in the material remain. In this study, it is shown that OCP undergoes a lowering of symmetry below 200 K, evidenced by <small><sup>1</sup></small>H, <small><sup>17</sup></small>O, <small><sup>31</sup></small>P and <small><sup>43</sup></small>Ca solid state NMR experiments. Using <em>ab-initio</em> molecular dynamics (MD) simulations and Gauge Including Projected Augmented Wave (GIPAW) DFT calculations of NMR parameters, the presence of rapid motion of the water molecules in the crystal cell at room temperature is proved. This information leads to an improved description of the OCP structure at both low and ambient temperatures, and helps explain long-standing issues of symmetry. Remaining challenges related to the understanding of the structure of OCP are then discussed.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"27 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-induced mobility in Octacalcium Phosphate impacts crystal symmetry: water dynamics studied by NMR crystallography\",\"authors\":\"Adam Nelson, Wassilios Papawassiliou, Subhradip Paul, Sabine Hediger, Ivan Hung, Zhehong Gan, Amrit Venkatesh, W. Trent Trent Franks, Mark Edmund E Smith, David Gajan, Gaël De Paëpe, Christian Bonhomme, Danielle Laurencin, Christel Gervais\",\"doi\":\"10.1039/d4fd00108g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Octacalcium phosphate (OCP, Ca<small><sub>8</sub></small>(PO<small><sub>4</sub></small>)<small><sub>4</sub></small>(HPO<small><sub>4</sub></small>)<small><sub>2</sub></small>.5H<small><sub>2</sub></small>O) is a notable calcium phosphate due to its biocompatibility, making it a widely studied material for bone substitution. It is known to be a precursor of bone mineral, but its role in biomineralisation remains unclear. While the structure of OCP has been the subject of thorough investigations (including using Rietveld refinements of X-ray diffraction data, and NMR crystallography studies), important questions regarding the symmetry and H-bonding network in the material remain. In this study, it is shown that OCP undergoes a lowering of symmetry below 200 K, evidenced by <small><sup>1</sup></small>H, <small><sup>17</sup></small>O, <small><sup>31</sup></small>P and <small><sup>43</sup></small>Ca solid state NMR experiments. Using <em>ab-initio</em> molecular dynamics (MD) simulations and Gauge Including Projected Augmented Wave (GIPAW) DFT calculations of NMR parameters, the presence of rapid motion of the water molecules in the crystal cell at room temperature is proved. This information leads to an improved description of the OCP structure at both low and ambient temperatures, and helps explain long-standing issues of symmetry. Remaining challenges related to the understanding of the structure of OCP are then discussed.\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4fd00108g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00108g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
磷酸八钙(OCP,Ca8(PO4)4(HPO4)2.5H2O)因其生物相容性而成为一种著名的磷酸钙,也因此成为一种被广泛研究的骨替代材料。众所周知,它是骨矿物质的前体,但其在生物矿化中的作用仍不清楚。虽然对 OCP 的结构进行了深入研究(包括使用 X 射线衍射数据的里特维尔德细化和核磁共振晶体学研究),但有关该材料的对称性和 H 键网络的重要问题仍然存在。本研究表明,OCP 在 200 K 以下会发生对称性降低的现象,1H、17O、31P 和 43Ca 固态核磁共振实验证明了这一点。利用非原位分子动力学(MD)模拟和 NMR 参数的量规包括投影增强波(GIPAW)DFT 计算,证明了在室温下晶胞中存在水分子的快速运动。这一信息改进了对 OCP 结构在低温和常温下的描述,并有助于解释长期存在的对称性问题。随后讨论了在理解 OCP 结构方面仍然存在的挑战。
Temperature-induced mobility in Octacalcium Phosphate impacts crystal symmetry: water dynamics studied by NMR crystallography
Octacalcium phosphate (OCP, Ca8(PO4)4(HPO4)2.5H2O) is a notable calcium phosphate due to its biocompatibility, making it a widely studied material for bone substitution. It is known to be a precursor of bone mineral, but its role in biomineralisation remains unclear. While the structure of OCP has been the subject of thorough investigations (including using Rietveld refinements of X-ray diffraction data, and NMR crystallography studies), important questions regarding the symmetry and H-bonding network in the material remain. In this study, it is shown that OCP undergoes a lowering of symmetry below 200 K, evidenced by 1H, 17O, 31P and 43Ca solid state NMR experiments. Using ab-initio molecular dynamics (MD) simulations and Gauge Including Projected Augmented Wave (GIPAW) DFT calculations of NMR parameters, the presence of rapid motion of the water molecules in the crystal cell at room temperature is proved. This information leads to an improved description of the OCP structure at both low and ambient temperatures, and helps explain long-standing issues of symmetry. Remaining challenges related to the understanding of the structure of OCP are then discussed.