菲利波夫系统切向集上的滑动模式

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Tiago Carvalho, Douglas D. Novaes, Durval J. Tonon
{"title":"菲利波夫系统切向集上的滑动模式","authors":"Tiago Carvalho, Douglas D. Novaes, Durval J. Tonon","doi":"10.1007/s00332-024-10052-4","DOIUrl":null,"url":null,"abstract":"<p>We consider piecewise smooth vector fields <span>\\(Z=(Z_+, Z_-)\\)</span> defined in <span>\\({\\mathbb {R}}^n\\)</span> where both vector fields are tangent to the switching manifold <span>\\(\\Sigma \\)</span> along a submanifold <span>\\(M\\subset \\Sigma \\)</span>. We shall see that, under suitable assumptions, Filippov convention gives rise to a unique sliding mode on <i>M</i>, governed by what we call the <i>tangential sliding vector field</i>. Here, we will provide the necessary and sufficient conditions for characterizing such a vector field. Additionally, we prove that the tangential sliding vector field is conjugated to the reduced dynamics of a singular perturbation problem arising from the Sotomayor–Teixeira regularization of <i>Z</i> around <i>M</i>. Finally, we analyze several examples where tangential sliding vector fields can be observed, including a model for intermittent treatment of HIV.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"41 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding Mode on Tangential Sets of Filippov Systems\",\"authors\":\"Tiago Carvalho, Douglas D. Novaes, Durval J. Tonon\",\"doi\":\"10.1007/s00332-024-10052-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider piecewise smooth vector fields <span>\\\\(Z=(Z_+, Z_-)\\\\)</span> defined in <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> where both vector fields are tangent to the switching manifold <span>\\\\(\\\\Sigma \\\\)</span> along a submanifold <span>\\\\(M\\\\subset \\\\Sigma \\\\)</span>. We shall see that, under suitable assumptions, Filippov convention gives rise to a unique sliding mode on <i>M</i>, governed by what we call the <i>tangential sliding vector field</i>. Here, we will provide the necessary and sufficient conditions for characterizing such a vector field. Additionally, we prove that the tangential sliding vector field is conjugated to the reduced dynamics of a singular perturbation problem arising from the Sotomayor–Teixeira regularization of <i>Z</i> around <i>M</i>. Finally, we analyze several examples where tangential sliding vector fields can be observed, including a model for intermittent treatment of HIV.</p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10052-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10052-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在\({\mathbb {R}}^n\) 中定义的片断光滑向量场(Z=(Z_+, Z_-)\),其中两个向量场都沿着一个子流形\(M\subset \Sigma \)切向切换流形\(\Sigma \)。我们将看到,在合适的假设条件下,菲利波夫惯例会在 M 上产生一种独特的滑动模式,它受我们称之为切向滑动矢量场的支配。在此,我们将提供描述这种向量场的必要条件和充分条件。此外,我们还将证明切向滑动矢量场与 M 周围 Z 的索托马约尔-特谢拉正则化所产生的奇异扰动问题的还原动力学共轭。最后,我们将分析可以观察到切向滑动矢量场的几个例子,其中包括艾滋病间歇治疗模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sliding Mode on Tangential Sets of Filippov Systems

Sliding Mode on Tangential Sets of Filippov Systems

We consider piecewise smooth vector fields \(Z=(Z_+, Z_-)\) defined in \({\mathbb {R}}^n\) where both vector fields are tangent to the switching manifold \(\Sigma \) along a submanifold \(M\subset \Sigma \). We shall see that, under suitable assumptions, Filippov convention gives rise to a unique sliding mode on M, governed by what we call the tangential sliding vector field. Here, we will provide the necessary and sufficient conditions for characterizing such a vector field. Additionally, we prove that the tangential sliding vector field is conjugated to the reduced dynamics of a singular perturbation problem arising from the Sotomayor–Teixeira regularization of Z around M. Finally, we analyze several examples where tangential sliding vector fields can be observed, including a model for intermittent treatment of HIV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信