基于秩的高维数据自适应独立性检验

Pub Date : 2024-06-28 DOI:10.1080/03610918.2024.2370987
Xiangyu Shi, Ruiyuan Cao, Jiang Du, Zhuqing Miao
{"title":"基于秩的高维数据自适应独立性检验","authors":"Xiangyu Shi, Ruiyuan Cao, Jiang Du, Zhuqing Miao","doi":"10.1080/03610918.2024.2370987","DOIUrl":null,"url":null,"abstract":"There are lots of methods for complete independence test for high-dimensional random vector. However, it is difficult for practitioners to choose a powerful test because the true alternative hypoth...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rank-based adaptive independence test for high-dimensional data\",\"authors\":\"Xiangyu Shi, Ruiyuan Cao, Jiang Du, Zhuqing Miao\",\"doi\":\"10.1080/03610918.2024.2370987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are lots of methods for complete independence test for high-dimensional random vector. However, it is difficult for practitioners to choose a powerful test because the true alternative hypoth...\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03610918.2024.2370987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03610918.2024.2370987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对高维随机向量进行完全独立检验的方法有很多。然而,由于真正的替代假设是不存在的,因此实践者很难选择一种强有力的检验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A rank-based adaptive independence test for high-dimensional data
There are lots of methods for complete independence test for high-dimensional random vector. However, it is difficult for practitioners to choose a powerful test because the true alternative hypoth...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信