{"title":"分支布朗运动加法量的渐近展开","authors":"Haojie Hou, Yan-Xia Ren, Renming Song","doi":"10.1007/s10959-024-01347-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>N</i>(<i>t</i>) be the collection of particles alive at time <i>t</i> in a branching Brownian motion in <span>\\(\\mathbb {R}^d\\)</span>, and for <span>\\(u\\in N(t)\\)</span>, let <span>\\({\\textbf{X}}_u(t)\\)</span> be the position of particle <i>u</i> at time <i>t</i>. For <span>\\(\\theta \\in \\mathbb {R}^d\\)</span>, we define the additive measures of the branching Brownian motion by </p><span>$$\\begin{aligned}{} & {} \\mu _t^\\theta (\\textrm{d}{\\textbf{x}}):= e^{-(1+\\frac{\\Vert \\theta \\Vert ^2}{2})t}\\sum _{u\\in N(t)} e^{-\\theta \\cdot {\\textbf{X}}_u(t)} \\delta _{\\left( {\\textbf{X}}_u(t)+\\theta t\\right) }(\\textrm{d}{\\textbf{x}}),\\\\{} & {} \\quad \\textrm{here}\\,\\, \\Vert \\theta \\Vert \\mathrm {is\\, the\\, Euclidean\\, norm\\, of}\\,\\, \\theta . \\end{aligned}$$</span><p>In this paper, under some conditions on the offspring distribution, we give asymptotic expansions of arbitrary order for <span>\\(\\mu _t^\\theta (({\\textbf{a}}, {\\textbf{b}}])\\)</span> and <span>\\(\\mu _t^\\theta ((-\\infty , {\\textbf{a}}])\\)</span> for <span>\\(\\theta \\in \\mathbb {R}^d\\)</span> with <span>\\(\\Vert \\theta \\Vert <\\sqrt{2}\\)</span>, where <span>\\((\\textbf{a}, \\textbf{b}]:=(a_1, b_1]\\times \\cdots \\times (a_d, b_d]\\)</span> and <span>\\((-\\infty , \\textbf{a}]:=(-\\infty , a_1]\\times \\cdots \\times (-\\infty , a_d]\\)</span> for <span>\\(\\textbf{a}=(a_1,\\cdots , a_d)\\)</span> and <span>\\(\\textbf{b}=(b_1,\\cdots , b_d)\\)</span>. These expansions sharpen the asymptotic results of Asmussen and Kaplan (Stoch Process Appl 4(1):1–13, 1976) and Kang (J Korean Math Soc 36(1): 139–157, 1999) and are analogs of the expansions in Gao and Liu (Sci China Math 64(12):2759–2774, 2021) and Révész et al. (J Appl Probab 42(4):1081–1094, 2005) for branching Wiener processes (a particular class of branching random walks) corresponding to <span>\\(\\theta ={\\textbf{0}}\\)</span>.\n</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"19 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Expansions for Additive Measures of Branching Brownian Motions\",\"authors\":\"Haojie Hou, Yan-Xia Ren, Renming Song\",\"doi\":\"10.1007/s10959-024-01347-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>N</i>(<i>t</i>) be the collection of particles alive at time <i>t</i> in a branching Brownian motion in <span>\\\\(\\\\mathbb {R}^d\\\\)</span>, and for <span>\\\\(u\\\\in N(t)\\\\)</span>, let <span>\\\\({\\\\textbf{X}}_u(t)\\\\)</span> be the position of particle <i>u</i> at time <i>t</i>. For <span>\\\\(\\\\theta \\\\in \\\\mathbb {R}^d\\\\)</span>, we define the additive measures of the branching Brownian motion by </p><span>$$\\\\begin{aligned}{} & {} \\\\mu _t^\\\\theta (\\\\textrm{d}{\\\\textbf{x}}):= e^{-(1+\\\\frac{\\\\Vert \\\\theta \\\\Vert ^2}{2})t}\\\\sum _{u\\\\in N(t)} e^{-\\\\theta \\\\cdot {\\\\textbf{X}}_u(t)} \\\\delta _{\\\\left( {\\\\textbf{X}}_u(t)+\\\\theta t\\\\right) }(\\\\textrm{d}{\\\\textbf{x}}),\\\\\\\\{} & {} \\\\quad \\\\textrm{here}\\\\,\\\\, \\\\Vert \\\\theta \\\\Vert \\\\mathrm {is\\\\, the\\\\, Euclidean\\\\, norm\\\\, of}\\\\,\\\\, \\\\theta . \\\\end{aligned}$$</span><p>In this paper, under some conditions on the offspring distribution, we give asymptotic expansions of arbitrary order for <span>\\\\(\\\\mu _t^\\\\theta (({\\\\textbf{a}}, {\\\\textbf{b}}])\\\\)</span> and <span>\\\\(\\\\mu _t^\\\\theta ((-\\\\infty , {\\\\textbf{a}}])\\\\)</span> for <span>\\\\(\\\\theta \\\\in \\\\mathbb {R}^d\\\\)</span> with <span>\\\\(\\\\Vert \\\\theta \\\\Vert <\\\\sqrt{2}\\\\)</span>, where <span>\\\\((\\\\textbf{a}, \\\\textbf{b}]:=(a_1, b_1]\\\\times \\\\cdots \\\\times (a_d, b_d]\\\\)</span> and <span>\\\\((-\\\\infty , \\\\textbf{a}]:=(-\\\\infty , a_1]\\\\times \\\\cdots \\\\times (-\\\\infty , a_d]\\\\)</span> for <span>\\\\(\\\\textbf{a}=(a_1,\\\\cdots , a_d)\\\\)</span> and <span>\\\\(\\\\textbf{b}=(b_1,\\\\cdots , b_d)\\\\)</span>. These expansions sharpen the asymptotic results of Asmussen and Kaplan (Stoch Process Appl 4(1):1–13, 1976) and Kang (J Korean Math Soc 36(1): 139–157, 1999) and are analogs of the expansions in Gao and Liu (Sci China Math 64(12):2759–2774, 2021) and Révész et al. (J Appl Probab 42(4):1081–1094, 2005) for branching Wiener processes (a particular class of branching random walks) corresponding to <span>\\\\(\\\\theta ={\\\\textbf{0}}\\\\)</span>.\\n</p>\",\"PeriodicalId\":54760,\"journal\":{\"name\":\"Journal of Theoretical Probability\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01347-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01347-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Asymptotic Expansions for Additive Measures of Branching Brownian Motions
Let N(t) be the collection of particles alive at time t in a branching Brownian motion in \(\mathbb {R}^d\), and for \(u\in N(t)\), let \({\textbf{X}}_u(t)\) be the position of particle u at time t. For \(\theta \in \mathbb {R}^d\), we define the additive measures of the branching Brownian motion by
In this paper, under some conditions on the offspring distribution, we give asymptotic expansions of arbitrary order for \(\mu _t^\theta (({\textbf{a}}, {\textbf{b}}])\) and \(\mu _t^\theta ((-\infty , {\textbf{a}}])\) for \(\theta \in \mathbb {R}^d\) with \(\Vert \theta \Vert <\sqrt{2}\), where \((\textbf{a}, \textbf{b}]:=(a_1, b_1]\times \cdots \times (a_d, b_d]\) and \((-\infty , \textbf{a}]:=(-\infty , a_1]\times \cdots \times (-\infty , a_d]\) for \(\textbf{a}=(a_1,\cdots , a_d)\) and \(\textbf{b}=(b_1,\cdots , b_d)\). These expansions sharpen the asymptotic results of Asmussen and Kaplan (Stoch Process Appl 4(1):1–13, 1976) and Kang (J Korean Math Soc 36(1): 139–157, 1999) and are analogs of the expansions in Gao and Liu (Sci China Math 64(12):2759–2774, 2021) and Révész et al. (J Appl Probab 42(4):1081–1094, 2005) for branching Wiener processes (a particular class of branching random walks) corresponding to \(\theta ={\textbf{0}}\).
期刊介绍:
Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.