分支布朗运动加法量的渐近展开

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Haojie Hou, Yan-Xia Ren, Renming Song
{"title":"分支布朗运动加法量的渐近展开","authors":"Haojie Hou, Yan-Xia Ren, Renming Song","doi":"10.1007/s10959-024-01347-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>N</i>(<i>t</i>) be the collection of particles alive at time <i>t</i> in a branching Brownian motion in <span>\\(\\mathbb {R}^d\\)</span>, and for <span>\\(u\\in N(t)\\)</span>, let <span>\\({\\textbf{X}}_u(t)\\)</span> be the position of particle <i>u</i> at time <i>t</i>. For <span>\\(\\theta \\in \\mathbb {R}^d\\)</span>, we define the additive measures of the branching Brownian motion by </p><span>$$\\begin{aligned}{} &amp; {} \\mu _t^\\theta (\\textrm{d}{\\textbf{x}}):= e^{-(1+\\frac{\\Vert \\theta \\Vert ^2}{2})t}\\sum _{u\\in N(t)} e^{-\\theta \\cdot {\\textbf{X}}_u(t)} \\delta _{\\left( {\\textbf{X}}_u(t)+\\theta t\\right) }(\\textrm{d}{\\textbf{x}}),\\\\{} &amp; {} \\quad \\textrm{here}\\,\\, \\Vert \\theta \\Vert \\mathrm {is\\, the\\, Euclidean\\, norm\\, of}\\,\\, \\theta . \\end{aligned}$$</span><p>In this paper, under some conditions on the offspring distribution, we give asymptotic expansions of arbitrary order for <span>\\(\\mu _t^\\theta (({\\textbf{a}}, {\\textbf{b}}])\\)</span> and <span>\\(\\mu _t^\\theta ((-\\infty , {\\textbf{a}}])\\)</span> for <span>\\(\\theta \\in \\mathbb {R}^d\\)</span> with <span>\\(\\Vert \\theta \\Vert &lt;\\sqrt{2}\\)</span>, where <span>\\((\\textbf{a}, \\textbf{b}]:=(a_1, b_1]\\times \\cdots \\times (a_d, b_d]\\)</span> and <span>\\((-\\infty , \\textbf{a}]:=(-\\infty , a_1]\\times \\cdots \\times (-\\infty , a_d]\\)</span> for <span>\\(\\textbf{a}=(a_1,\\cdots , a_d)\\)</span> and <span>\\(\\textbf{b}=(b_1,\\cdots , b_d)\\)</span>. These expansions sharpen the asymptotic results of Asmussen and Kaplan (Stoch Process Appl 4(1):1–13, 1976) and Kang (J Korean Math Soc 36(1): 139–157, 1999) and are analogs of the expansions in Gao and Liu (Sci China Math 64(12):2759–2774, 2021) and Révész et al. (J Appl Probab 42(4):1081–1094, 2005) for branching Wiener processes (a particular class of branching random walks) corresponding to <span>\\(\\theta ={\\textbf{0}}\\)</span>.\n</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"19 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Expansions for Additive Measures of Branching Brownian Motions\",\"authors\":\"Haojie Hou, Yan-Xia Ren, Renming Song\",\"doi\":\"10.1007/s10959-024-01347-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>N</i>(<i>t</i>) be the collection of particles alive at time <i>t</i> in a branching Brownian motion in <span>\\\\(\\\\mathbb {R}^d\\\\)</span>, and for <span>\\\\(u\\\\in N(t)\\\\)</span>, let <span>\\\\({\\\\textbf{X}}_u(t)\\\\)</span> be the position of particle <i>u</i> at time <i>t</i>. For <span>\\\\(\\\\theta \\\\in \\\\mathbb {R}^d\\\\)</span>, we define the additive measures of the branching Brownian motion by </p><span>$$\\\\begin{aligned}{} &amp; {} \\\\mu _t^\\\\theta (\\\\textrm{d}{\\\\textbf{x}}):= e^{-(1+\\\\frac{\\\\Vert \\\\theta \\\\Vert ^2}{2})t}\\\\sum _{u\\\\in N(t)} e^{-\\\\theta \\\\cdot {\\\\textbf{X}}_u(t)} \\\\delta _{\\\\left( {\\\\textbf{X}}_u(t)+\\\\theta t\\\\right) }(\\\\textrm{d}{\\\\textbf{x}}),\\\\\\\\{} &amp; {} \\\\quad \\\\textrm{here}\\\\,\\\\, \\\\Vert \\\\theta \\\\Vert \\\\mathrm {is\\\\, the\\\\, Euclidean\\\\, norm\\\\, of}\\\\,\\\\, \\\\theta . \\\\end{aligned}$$</span><p>In this paper, under some conditions on the offspring distribution, we give asymptotic expansions of arbitrary order for <span>\\\\(\\\\mu _t^\\\\theta (({\\\\textbf{a}}, {\\\\textbf{b}}])\\\\)</span> and <span>\\\\(\\\\mu _t^\\\\theta ((-\\\\infty , {\\\\textbf{a}}])\\\\)</span> for <span>\\\\(\\\\theta \\\\in \\\\mathbb {R}^d\\\\)</span> with <span>\\\\(\\\\Vert \\\\theta \\\\Vert &lt;\\\\sqrt{2}\\\\)</span>, where <span>\\\\((\\\\textbf{a}, \\\\textbf{b}]:=(a_1, b_1]\\\\times \\\\cdots \\\\times (a_d, b_d]\\\\)</span> and <span>\\\\((-\\\\infty , \\\\textbf{a}]:=(-\\\\infty , a_1]\\\\times \\\\cdots \\\\times (-\\\\infty , a_d]\\\\)</span> for <span>\\\\(\\\\textbf{a}=(a_1,\\\\cdots , a_d)\\\\)</span> and <span>\\\\(\\\\textbf{b}=(b_1,\\\\cdots , b_d)\\\\)</span>. These expansions sharpen the asymptotic results of Asmussen and Kaplan (Stoch Process Appl 4(1):1–13, 1976) and Kang (J Korean Math Soc 36(1): 139–157, 1999) and are analogs of the expansions in Gao and Liu (Sci China Math 64(12):2759–2774, 2021) and Révész et al. (J Appl Probab 42(4):1081–1094, 2005) for branching Wiener processes (a particular class of branching random walks) corresponding to <span>\\\\(\\\\theta ={\\\\textbf{0}}\\\\)</span>.\\n</p>\",\"PeriodicalId\":54760,\"journal\":{\"name\":\"Journal of Theoretical Probability\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01347-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01347-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

让N(t)是在\(\mathbb {R}^d\)中的分支布朗运动中在t时刻存活的粒子集合,对于\(u\in N(t)\),让\({\textbf{X}}}_u(t)\)是粒子u在t时刻的位置。对于 \(\theta \in \mathbb {R}^d\),我们用 $$\begin{aligned}{} & {} 来定义分支布朗运动的加法度量。\mu _t^\theta (\textrm{d}{\textbf{x}}):= e^{-(1+frac{Vert \theta \Vert ^2}{2})t}sum _{u\in N(t)} e^{-\theta \cdot {\textbf{X}}_u(t)} \delta _{left( {\textbf{X}}_u(t)+\theta t\right) }(\textrm{d}{\textbf{x}}),\{} & {}\textrm{here}\,\, \Vert \theta \Vert \mathrm {is\, the\, Euclidean\, norm\, of},\, \theta .\end{aligned}$$ 在本文中,在后代分布的一些条件下,我们给出了 \(\mu _t^\theta (({\textbf{a}}、{)和(((-\infty , {\textbf{a}}]))for \(\theta \in \mathbb {R}^d\) with \(\Vert \theta \Vert <;\其中 ((textbf{a}, textbf{b}]:=(a_1, b_1]times \cdots \times (a_d, b_d]\) and \((-\infty , \textbf{a}]:=(-\infty , a_1]\times \cdots \times (-\infty , a_d]\) for \(\textbf{a}=(a_1,\cdots , a_d)\) and \(\textbf{b}=(b_1,\cdots , b_d)\).这些展开使 Asmussen 和 Kaplan (Stoch Process Appl 4(1):1-13, 1976) 和 Kang (J Korean Math Soc 36(1):139-157, 1999)中的扩展结果,并且是 Gao 和 Liu (Sci China Math 64(12):2759-2774, 2021) 以及 Révész 等人(J Appl Probab 42(4):1081-1094, 2005)中针对分支维纳过程(一类特殊的分支随机游走)的扩展结果的类似结果,这些扩展结果对应于 \(\theta ={\textbf{0}}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Expansions for Additive Measures of Branching Brownian Motions

Let N(t) be the collection of particles alive at time t in a branching Brownian motion in \(\mathbb {R}^d\), and for \(u\in N(t)\), let \({\textbf{X}}_u(t)\) be the position of particle u at time t. For \(\theta \in \mathbb {R}^d\), we define the additive measures of the branching Brownian motion by

$$\begin{aligned}{} & {} \mu _t^\theta (\textrm{d}{\textbf{x}}):= e^{-(1+\frac{\Vert \theta \Vert ^2}{2})t}\sum _{u\in N(t)} e^{-\theta \cdot {\textbf{X}}_u(t)} \delta _{\left( {\textbf{X}}_u(t)+\theta t\right) }(\textrm{d}{\textbf{x}}),\\{} & {} \quad \textrm{here}\,\, \Vert \theta \Vert \mathrm {is\, the\, Euclidean\, norm\, of}\,\, \theta . \end{aligned}$$

In this paper, under some conditions on the offspring distribution, we give asymptotic expansions of arbitrary order for \(\mu _t^\theta (({\textbf{a}}, {\textbf{b}}])\) and \(\mu _t^\theta ((-\infty , {\textbf{a}}])\) for \(\theta \in \mathbb {R}^d\) with \(\Vert \theta \Vert <\sqrt{2}\), where \((\textbf{a}, \textbf{b}]:=(a_1, b_1]\times \cdots \times (a_d, b_d]\) and \((-\infty , \textbf{a}]:=(-\infty , a_1]\times \cdots \times (-\infty , a_d]\) for \(\textbf{a}=(a_1,\cdots , a_d)\) and \(\textbf{b}=(b_1,\cdots , b_d)\). These expansions sharpen the asymptotic results of Asmussen and Kaplan (Stoch Process Appl 4(1):1–13, 1976) and Kang (J Korean Math Soc 36(1): 139–157, 1999) and are analogs of the expansions in Gao and Liu (Sci China Math 64(12):2759–2774, 2021) and Révész et al. (J Appl Probab 42(4):1081–1094, 2005) for branching Wiener processes (a particular class of branching random walks) corresponding to \(\theta ={\textbf{0}}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信