分布相关二阶随机微分方程的哈纳克不等式

Pub Date : 2024-06-18 DOI:10.1007/s10959-024-01346-0
Xing Huang, Xiaochen Ma
{"title":"分布相关二阶随机微分方程的哈纳克不等式","authors":"Xing Huang, Xiaochen Ma","doi":"10.1007/s10959-024-01346-0","DOIUrl":null,"url":null,"abstract":"<p>By investigating the regularity of the nonlinear semigroup <span>\\(P_t^*\\)</span> associated with the distribution dependent second-order stochastic differential equations, the Harnack inequality is derived when the drift is Lipschitz continuous in the measure variable under the distance induced by the functions being <span>\\(\\beta \\)</span>-Hölder continuous (with <span>\\(\\beta &gt; \\frac{2}{3}\\)</span>) on the degenerate component and square root of Dini continuous on the non-degenerate one. The results extend the existing ones in which the drift is Lipschitz continuous in <span>\\(L^2\\)</span>-Wasserstein distance.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnack Inequality for Distribution Dependent Second-Order Stochastic Differential Equations\",\"authors\":\"Xing Huang, Xiaochen Ma\",\"doi\":\"10.1007/s10959-024-01346-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By investigating the regularity of the nonlinear semigroup <span>\\\\(P_t^*\\\\)</span> associated with the distribution dependent second-order stochastic differential equations, the Harnack inequality is derived when the drift is Lipschitz continuous in the measure variable under the distance induced by the functions being <span>\\\\(\\\\beta \\\\)</span>-Hölder continuous (with <span>\\\\(\\\\beta &gt; \\\\frac{2}{3}\\\\)</span>) on the degenerate component and square root of Dini continuous on the non-degenerate one. The results extend the existing ones in which the drift is Lipschitz continuous in <span>\\\\(L^2\\\\)</span>-Wasserstein distance.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01346-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01346-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过研究与分布相关的二阶随机微分方程相关的非线性半群 \(P_t^*\)的正则性,得出了当漂移在度量变量中为 Lipschitz 连续时的哈纳克不等式,该不等式是由\(\beta \)-Hölder连续(在退化分量上为\(\beta > \frac{2}{3}\),在非退化分量上为 Dini 的平方根连续的函数所引起的距离下的。这些结果扩展了现有结果,其中漂移在 \(L^2\)-Wasserstein 距离上是 Lipschitz 连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Harnack Inequality for Distribution Dependent Second-Order Stochastic Differential Equations

By investigating the regularity of the nonlinear semigroup \(P_t^*\) associated with the distribution dependent second-order stochastic differential equations, the Harnack inequality is derived when the drift is Lipschitz continuous in the measure variable under the distance induced by the functions being \(\beta \)-Hölder continuous (with \(\beta > \frac{2}{3}\)) on the degenerate component and square root of Dini continuous on the non-degenerate one. The results extend the existing ones in which the drift is Lipschitz continuous in \(L^2\)-Wasserstein distance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信