分布相关二阶随机微分方程的哈纳克不等式

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Xing Huang, Xiaochen Ma
{"title":"分布相关二阶随机微分方程的哈纳克不等式","authors":"Xing Huang, Xiaochen Ma","doi":"10.1007/s10959-024-01346-0","DOIUrl":null,"url":null,"abstract":"<p>By investigating the regularity of the nonlinear semigroup <span>\\(P_t^*\\)</span> associated with the distribution dependent second-order stochastic differential equations, the Harnack inequality is derived when the drift is Lipschitz continuous in the measure variable under the distance induced by the functions being <span>\\(\\beta \\)</span>-Hölder continuous (with <span>\\(\\beta &gt; \\frac{2}{3}\\)</span>) on the degenerate component and square root of Dini continuous on the non-degenerate one. The results extend the existing ones in which the drift is Lipschitz continuous in <span>\\(L^2\\)</span>-Wasserstein distance.</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"37 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnack Inequality for Distribution Dependent Second-Order Stochastic Differential Equations\",\"authors\":\"Xing Huang, Xiaochen Ma\",\"doi\":\"10.1007/s10959-024-01346-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By investigating the regularity of the nonlinear semigroup <span>\\\\(P_t^*\\\\)</span> associated with the distribution dependent second-order stochastic differential equations, the Harnack inequality is derived when the drift is Lipschitz continuous in the measure variable under the distance induced by the functions being <span>\\\\(\\\\beta \\\\)</span>-Hölder continuous (with <span>\\\\(\\\\beta &gt; \\\\frac{2}{3}\\\\)</span>) on the degenerate component and square root of Dini continuous on the non-degenerate one. The results extend the existing ones in which the drift is Lipschitz continuous in <span>\\\\(L^2\\\\)</span>-Wasserstein distance.</p>\",\"PeriodicalId\":54760,\"journal\":{\"name\":\"Journal of Theoretical Probability\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01346-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01346-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

通过研究与分布相关的二阶随机微分方程相关的非线性半群 \(P_t^*\)的正则性,得出了当漂移在度量变量中为 Lipschitz 连续时的哈纳克不等式,该不等式是由\(\beta \)-Hölder连续(在退化分量上为\(\beta > \frac{2}{3}\),在非退化分量上为 Dini 的平方根连续的函数所引起的距离下的。这些结果扩展了现有结果,其中漂移在 \(L^2\)-Wasserstein 距离上是 Lipschitz 连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnack Inequality for Distribution Dependent Second-Order Stochastic Differential Equations

By investigating the regularity of the nonlinear semigroup \(P_t^*\) associated with the distribution dependent second-order stochastic differential equations, the Harnack inequality is derived when the drift is Lipschitz continuous in the measure variable under the distance induced by the functions being \(\beta \)-Hölder continuous (with \(\beta > \frac{2}{3}\)) on the degenerate component and square root of Dini continuous on the non-degenerate one. The results extend the existing ones in which the drift is Lipschitz continuous in \(L^2\)-Wasserstein distance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信