拓扑 Posets 和热带相控 Matroids

Pub Date : 2024-07-02 DOI:10.1007/s00454-024-00668-4
Ulysses Alvarez, Ross Geoghegan
{"title":"拓扑 Posets 和热带相控 Matroids","authors":"Ulysses Alvarez, Ross Geoghegan","doi":"10.1007/s00454-024-00668-4","DOIUrl":null,"url":null,"abstract":"<p>For a discrete poset <span>\\({\\mathcal {X}}\\)</span>, McCord proved that the natural map <span>\\(|{{\\mathcal {X}}}|\\rightarrow {{\\mathcal {X}}}\\)</span>, from the order complex to the poset with the Up topology, is a weak homotopy equivalence. Much later, Živaljević defined the notion of order complex for a topological poset. For a large class of topological posets we prove the analog of McCord’s theorem, namely that <i>the natural map from the order complex to the topological poset with the Up topology is a weak homotopy equivalence</i>. A familiar topological example is the Grassmann poset <span>\\(\\mathcal {G}_n(\\mathbb {{\\mathbb {R}}})\\)</span> of proper non-zero linear subspaces of <span>\\({\\mathbb {R}}^{n+1}\\)</span> partially ordered by inclusion. But our motivation in topological combinatorics is to apply the theorem to posets associated with tropical phased matroids over the tropical phase hyperfield, and in particular to elucidate the tropical version of the MacPhersonian Conjecture. This is explained in Sect. 2.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Posets and Tropical Phased Matroids\",\"authors\":\"Ulysses Alvarez, Ross Geoghegan\",\"doi\":\"10.1007/s00454-024-00668-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a discrete poset <span>\\\\({\\\\mathcal {X}}\\\\)</span>, McCord proved that the natural map <span>\\\\(|{{\\\\mathcal {X}}}|\\\\rightarrow {{\\\\mathcal {X}}}\\\\)</span>, from the order complex to the poset with the Up topology, is a weak homotopy equivalence. Much later, Živaljević defined the notion of order complex for a topological poset. For a large class of topological posets we prove the analog of McCord’s theorem, namely that <i>the natural map from the order complex to the topological poset with the Up topology is a weak homotopy equivalence</i>. A familiar topological example is the Grassmann poset <span>\\\\(\\\\mathcal {G}_n(\\\\mathbb {{\\\\mathbb {R}}})\\\\)</span> of proper non-zero linear subspaces of <span>\\\\({\\\\mathbb {R}}^{n+1}\\\\)</span> partially ordered by inclusion. But our motivation in topological combinatorics is to apply the theorem to posets associated with tropical phased matroids over the tropical phase hyperfield, and in particular to elucidate the tropical version of the MacPhersonian Conjecture. This is explained in Sect. 2.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00668-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00668-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于离散正集 \({\mathcal{X}}\),麦考德证明了从阶复数到具有上拓扑的正集的自然映射 \(|{\mathcal{X}}|\rightarrow{{mathcal{X}}}\)是弱同调等价的。后来,Živaljević 为拓扑正集定义了阶复数的概念。对于一大类拓扑正集,我们证明了麦考德定理的类似定理,即从阶复数到具有Up拓扑的拓扑正集的自然映射是弱同调等价的。一个熟悉的拓扑例子是格拉斯曼正集(Grassmann poset \(\mathcal {G}_n(\mathbb {{\mathbb {R}})),它是\({\mathbb {R}}^{n+1}\) 的适当非零线性子空间,部分由包含有序。但我们在拓扑组合论中的动机是将该定理应用于与热带相超域上的热带相矩阵相关的正集,特别是阐明麦克弗森猜想的热带版本。第 2 节将对此进行解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Topological Posets and Tropical Phased Matroids

分享
查看原文
Topological Posets and Tropical Phased Matroids

For a discrete poset \({\mathcal {X}}\), McCord proved that the natural map \(|{{\mathcal {X}}}|\rightarrow {{\mathcal {X}}}\), from the order complex to the poset with the Up topology, is a weak homotopy equivalence. Much later, Živaljević defined the notion of order complex for a topological poset. For a large class of topological posets we prove the analog of McCord’s theorem, namely that the natural map from the order complex to the topological poset with the Up topology is a weak homotopy equivalence. A familiar topological example is the Grassmann poset \(\mathcal {G}_n(\mathbb {{\mathbb {R}}})\) of proper non-zero linear subspaces of \({\mathbb {R}}^{n+1}\) partially ordered by inclusion. But our motivation in topological combinatorics is to apply the theorem to posets associated with tropical phased matroids over the tropical phase hyperfield, and in particular to elucidate the tropical version of the MacPhersonian Conjecture. This is explained in Sect. 2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信