{"title":"依赖状态的扫频过程:渐近行为和算法方法","authors":"Samir Adly, Monica G. Cojocaru, Ba Khiet Le","doi":"10.1007/s10957-024-02485-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the asymptotic properties of a particular class of state-dependent sweeping processes. While extensive research has been conducted on the existence and uniqueness of solutions for sweeping processes, there is a scarcity of studies addressing their behavior in the limit of large time. Additionally, we introduce novel algorithms designed for the resolution of quasi-variational inequalities. As a result, we introduce a new derivative-free algorithm to find zeros of nonsmooth Lipschitz continuous mappings with a linear convergence rate. This algorithm can be effectively used in nonsmooth and nonconvex optimization problems that do not possess necessarily second-order differentiability conditions of the data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-Dependent Sweeping Processes: Asymptotic Behavior and Algorithmic Approaches\",\"authors\":\"Samir Adly, Monica G. Cojocaru, Ba Khiet Le\",\"doi\":\"10.1007/s10957-024-02485-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the asymptotic properties of a particular class of state-dependent sweeping processes. While extensive research has been conducted on the existence and uniqueness of solutions for sweeping processes, there is a scarcity of studies addressing their behavior in the limit of large time. Additionally, we introduce novel algorithms designed for the resolution of quasi-variational inequalities. As a result, we introduce a new derivative-free algorithm to find zeros of nonsmooth Lipschitz continuous mappings with a linear convergence rate. This algorithm can be effectively used in nonsmooth and nonconvex optimization problems that do not possess necessarily second-order differentiability conditions of the data.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02485-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02485-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
State-Dependent Sweeping Processes: Asymptotic Behavior and Algorithmic Approaches
In this paper, we investigate the asymptotic properties of a particular class of state-dependent sweeping processes. While extensive research has been conducted on the existence and uniqueness of solutions for sweeping processes, there is a scarcity of studies addressing their behavior in the limit of large time. Additionally, we introduce novel algorithms designed for the resolution of quasi-variational inequalities. As a result, we introduce a new derivative-free algorithm to find zeros of nonsmooth Lipschitz continuous mappings with a linear convergence rate. This algorithm can be effectively used in nonsmooth and nonconvex optimization problems that do not possess necessarily second-order differentiability conditions of the data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.