通过模拟数据后处理的机器学习雷暴预报方法

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Kianusch Vahid Yousefnia, Tobias Bölle, Isabella Zöbisch, Thomas Gerz
{"title":"通过模拟数据后处理的机器学习雷暴预报方法","authors":"Kianusch Vahid Yousefnia, Tobias Bölle, Isabella Zöbisch, Thomas Gerz","doi":"10.1002/qj.4777","DOIUrl":null,"url":null,"abstract":"Thunderstorms pose a major hazard to society and the economy, which calls for reliable thunderstorm forecasts. In this work, we introduce SALAMA, a feedforward neural network model for identifying thunderstorm occurrence in numerical weather prediction (NWP) data. The model is trained on convection‐resolving ensemble forecasts over central Europe and lightning observations. Given only a set of pixel‐wise input parameters that are extracted from NWP data and related to thunderstorm development, SALAMA infers the probability of thunderstorm occurrence in a reliably calibrated manner. For lead times up to 11 h, we find a forecast skill superior to classification based only on NWP reflectivity. Varying the spatiotemporal criteria by which we associate lightning observations with NWP data, we show that the time‐scale for skillful thunderstorm predictions increases linearly with the spatial scale of the forecast.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine‐learning approach to thunderstorm forecasting through post‐processing of simulation data\",\"authors\":\"Kianusch Vahid Yousefnia, Tobias Bölle, Isabella Zöbisch, Thomas Gerz\",\"doi\":\"10.1002/qj.4777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thunderstorms pose a major hazard to society and the economy, which calls for reliable thunderstorm forecasts. In this work, we introduce SALAMA, a feedforward neural network model for identifying thunderstorm occurrence in numerical weather prediction (NWP) data. The model is trained on convection‐resolving ensemble forecasts over central Europe and lightning observations. Given only a set of pixel‐wise input parameters that are extracted from NWP data and related to thunderstorm development, SALAMA infers the probability of thunderstorm occurrence in a reliably calibrated manner. For lead times up to 11 h, we find a forecast skill superior to classification based only on NWP reflectivity. Varying the spatiotemporal criteria by which we associate lightning observations with NWP data, we show that the time‐scale for skillful thunderstorm predictions increases linearly with the spatial scale of the forecast.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4777\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4777","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

雷暴对社会和经济造成重大危害,因此需要可靠的雷暴预报。在这项工作中,我们介绍了 SALAMA,这是一个用于识别数值天气预报(NWP)数据中雷暴发生的前馈神经网络模型。该模型根据欧洲中部对流解析集合预报和闪电观测数据进行训练。SALAMA 仅给出一组从 NWP 数据中提取的与雷暴发展相关的像素输入参数,就能以可靠的校准方式推断出雷暴发生的概率。对于最长 11 小时的前导时间,我们发现其预报技能优于仅基于 NWP 反射率的分类。通过改变将闪电观测数据与 NWP 数据联系起来的时空标准,我们发现高水平雷暴预测的时间尺度与预测的空间尺度呈线性增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine‐learning approach to thunderstorm forecasting through post‐processing of simulation data
Thunderstorms pose a major hazard to society and the economy, which calls for reliable thunderstorm forecasts. In this work, we introduce SALAMA, a feedforward neural network model for identifying thunderstorm occurrence in numerical weather prediction (NWP) data. The model is trained on convection‐resolving ensemble forecasts over central Europe and lightning observations. Given only a set of pixel‐wise input parameters that are extracted from NWP data and related to thunderstorm development, SALAMA infers the probability of thunderstorm occurrence in a reliably calibrated manner. For lead times up to 11 h, we find a forecast skill superior to classification based only on NWP reflectivity. Varying the spatiotemporal criteria by which we associate lightning observations with NWP data, we show that the time‐scale for skillful thunderstorm predictions increases linearly with the spatial scale of the forecast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信