{"title":"六边形晶格上的波传播","authors":"David Kapanadze, Ekaterina Pesetskaya","doi":"10.1515/gmj-2024-2035","DOIUrl":null,"url":null,"abstract":"We consider propagation of two-dimensional waves on the infinite hexagonal (honeycomb) lattice. Namely, we study the discrete Helmholtz equation in hexagonal lattices without and with a boundary. It is shown that for some configurations these problems can be equivalently reduced to similar problems for the triangular lattice. Based on this fact, new results are obtained for the existence and uniqueness of the solution in the case of the real wave number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>6</m:mn> </m:msqrt> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msqrt> <m:mn>2</m:mn> </m:msqrt> <m:mo>,</m:mo> <m:msqrt> <m:mn>3</m:mn> </m:msqrt> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2035_eq_0179.png\"/> <jats:tex-math>{k\\in(0,\\sqrt{6})\\setminus\\{\\sqrt{2},\\sqrt{3},2\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the non-homogeneous Helmholtz equation in hexagonal lattices with no boundaries and the real wave number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>2</m:mn> </m:msqrt> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>6</m:mn> </m:msqrt> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2035_eq_0178.png\"/> <jats:tex-math>{k\\in(0,\\sqrt{2})\\cup(2,\\sqrt{6})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the exterior Dirichlet problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave propagation on hexagonal lattices\",\"authors\":\"David Kapanadze, Ekaterina Pesetskaya\",\"doi\":\"10.1515/gmj-2024-2035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider propagation of two-dimensional waves on the infinite hexagonal (honeycomb) lattice. Namely, we study the discrete Helmholtz equation in hexagonal lattices without and with a boundary. It is shown that for some configurations these problems can be equivalently reduced to similar problems for the triangular lattice. Based on this fact, new results are obtained for the existence and uniqueness of the solution in the case of the real wave number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>k</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>6</m:mn> </m:msqrt> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msqrt> <m:mn>2</m:mn> </m:msqrt> <m:mo>,</m:mo> <m:msqrt> <m:mn>3</m:mn> </m:msqrt> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2035_eq_0179.png\\\"/> <jats:tex-math>{k\\\\in(0,\\\\sqrt{6})\\\\setminus\\\\{\\\\sqrt{2},\\\\sqrt{3},2\\\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the non-homogeneous Helmholtz equation in hexagonal lattices with no boundaries and the real wave number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>k</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>2</m:mn> </m:msqrt> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>6</m:mn> </m:msqrt> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2035_eq_0178.png\\\"/> <jats:tex-math>{k\\\\in(0,\\\\sqrt{2})\\\\cup(2,\\\\sqrt{6})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the exterior Dirichlet problem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider propagation of two-dimensional waves on the infinite hexagonal (honeycomb) lattice. Namely, we study the discrete Helmholtz equation in hexagonal lattices without and with a boundary. It is shown that for some configurations these problems can be equivalently reduced to similar problems for the triangular lattice. Based on this fact, new results are obtained for the existence and uniqueness of the solution in the case of the real wave number k∈(0,6)∖{2,3,2}{k\in(0,\sqrt{6})\setminus\{\sqrt{2},\sqrt{3},2\}} for the non-homogeneous Helmholtz equation in hexagonal lattices with no boundaries and the real wave number k∈(0,2)∪(2,6){k\in(0,\sqrt{2})\cup(2,\sqrt{6})} for the exterior Dirichlet problem.