六边形晶格上的波传播

Pub Date : 2024-06-25 DOI:10.1515/gmj-2024-2035
David Kapanadze, Ekaterina Pesetskaya
{"title":"六边形晶格上的波传播","authors":"David Kapanadze, Ekaterina Pesetskaya","doi":"10.1515/gmj-2024-2035","DOIUrl":null,"url":null,"abstract":"We consider propagation of two-dimensional waves on the infinite hexagonal (honeycomb) lattice. Namely, we study the discrete Helmholtz equation in hexagonal lattices without and with a boundary. It is shown that for some configurations these problems can be equivalently reduced to similar problems for the triangular lattice. Based on this fact, new results are obtained for the existence and uniqueness of the solution in the case of the real wave number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>6</m:mn> </m:msqrt> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msqrt> <m:mn>2</m:mn> </m:msqrt> <m:mo>,</m:mo> <m:msqrt> <m:mn>3</m:mn> </m:msqrt> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2035_eq_0179.png\"/> <jats:tex-math>{k\\in(0,\\sqrt{6})\\setminus\\{\\sqrt{2},\\sqrt{3},2\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the non-homogeneous Helmholtz equation in hexagonal lattices with no boundaries and the real wave number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>2</m:mn> </m:msqrt> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>6</m:mn> </m:msqrt> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2035_eq_0178.png\"/> <jats:tex-math>{k\\in(0,\\sqrt{2})\\cup(2,\\sqrt{6})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the exterior Dirichlet problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave propagation on hexagonal lattices\",\"authors\":\"David Kapanadze, Ekaterina Pesetskaya\",\"doi\":\"10.1515/gmj-2024-2035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider propagation of two-dimensional waves on the infinite hexagonal (honeycomb) lattice. Namely, we study the discrete Helmholtz equation in hexagonal lattices without and with a boundary. It is shown that for some configurations these problems can be equivalently reduced to similar problems for the triangular lattice. Based on this fact, new results are obtained for the existence and uniqueness of the solution in the case of the real wave number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>k</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>6</m:mn> </m:msqrt> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msqrt> <m:mn>2</m:mn> </m:msqrt> <m:mo>,</m:mo> <m:msqrt> <m:mn>3</m:mn> </m:msqrt> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2035_eq_0179.png\\\"/> <jats:tex-math>{k\\\\in(0,\\\\sqrt{6})\\\\setminus\\\\{\\\\sqrt{2},\\\\sqrt{3},2\\\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the non-homogeneous Helmholtz equation in hexagonal lattices with no boundaries and the real wave number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>k</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>2</m:mn> </m:msqrt> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:msqrt> <m:mn>6</m:mn> </m:msqrt> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2035_eq_0178.png\\\"/> <jats:tex-math>{k\\\\in(0,\\\\sqrt{2})\\\\cup(2,\\\\sqrt{6})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the exterior Dirichlet problem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑二维波在无限六边形(蜂巢)晶格上的传播。也就是说,我们研究了无边界和有边界六边形晶格中的离散亥姆霍兹方程。研究表明,对于某些配置,这些问题可以等效地简化为三角形晶格中的类似问题。基于这一事实,在实波数 k∈ ( 0 , 6 ) ∖ { 2 , 3 , 2 } 的情况下,求解的存在性和唯一性得到了新的结果。 {k\in(0,\sqrt{6})\setminus\{sqrt{2},\sqrt{3},2\}}}为无边界六方格中的非均相亥姆霍兹方程,实波数 k∈ ( 0 、 2 ) ∪ ( 2 , 6 ) {k\in(0,\sqrt{2})\cup(2,\sqrt{6})} 用于外部德里赫特问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Wave propagation on hexagonal lattices
We consider propagation of two-dimensional waves on the infinite hexagonal (honeycomb) lattice. Namely, we study the discrete Helmholtz equation in hexagonal lattices without and with a boundary. It is shown that for some configurations these problems can be equivalently reduced to similar problems for the triangular lattice. Based on this fact, new results are obtained for the existence and uniqueness of the solution in the case of the real wave number k ( 0 , 6 ) { 2 , 3 , 2 } {k\in(0,\sqrt{6})\setminus\{\sqrt{2},\sqrt{3},2\}} for the non-homogeneous Helmholtz equation in hexagonal lattices with no boundaries and the real wave number k ( 0 , 2 ) ( 2 , 6 ) {k\in(0,\sqrt{2})\cup(2,\sqrt{6})} for the exterior Dirichlet problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信