Alexandra R. Knight, Robyn J. Watts, Catherine Allan, Simon McDonald, Natasha Lappin
{"title":"对保护城市周边环境中濒危的斯隆氏小蛙(Crinia sloanei)具有重要意义的生境特征","authors":"Alexandra R. Knight, Robyn J. Watts, Catherine Allan, Simon McDonald, Natasha Lappin","doi":"10.1071/wr23032","DOIUrl":null,"url":null,"abstract":"<strong> Context</strong><p>Determining and quantifying habitat selection of endangered species in peri-urban environments assists planners and managers to develop strategies and alternative conservation measures in the face of urban expansion and development. Sloane’s Froglet (<i>Crinia sloanei</i>), listed nationally as endangered in Australia, is a little-known species distributed within peri-urban environments, where foundational ecological information and the development of adequate conservation responses has been lacking.</p><strong> Aims</strong><p>(a) To determine a core calling period for Sloane’s Froglet and detection probabilities for occupancy surveys. (b) To understand and characterise the habitat that Sloane’s Froglet uses at the wetland and microhabitat scale.</p><strong> Methods</strong><p>We used generalised linear modelling and the information-theoretic approach to model habitat preferences for this species at two scales: the waterbody scale, and the microhabitat scale. We quantified the habitat characteristics of waterbodies occupied by Sloane’s Froglet in winter, its peak breeding period, by measuring the biophysical characteristics of 54 occupied and 40 unoccupied waterbodies. The microhabitat and relative spatial positioning of Sloane’s Froglet within waterbodies was examined at 54 calling sites in an area of one m squared around individual male Sloane’s Froglets and 57 randomly selected unused sites. Wetlands were surveyed multiple times to determine detection probabilities.</p><strong> Key results</strong><p>Model selection indicated that Sloane’s Froglet is 450 times more likely to occupy a waterbody when an adjacent ephemeral shallow overflow is present; and are more likely to be present when there is greater cover of small stem-diameter emergent vegetation and less bare ground on the bank. The microhabitat investigation of one m squared sites showed that Sloane’s Froglet’s calling sites are predominantly inundated, and at significantly shallower water depths, than unused sites. Sloane’s Froglet was found to always call from within the waterbody, distinguishing them from other sympatric <i>Crinia</i> species.</p><strong> Conclusions</strong><p>The habitat characteristics detailed provide information necessary for the management of Sloane’s Froglet and its habitat.</p><strong> Implications</strong><p>Housing and industrial development is occurring rapidly in Sloane’s Froglet habitat. The information provided here can be used to refine local and state government planning and better design appropriate responses. Indeed, results from this study are currently being used by agencies and environmental consultants when developing conservation plans and in the design of stormwater retention ponds in rapidly urbanising environments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Habitat features important for the conservation of the endangered Sloane’s Froglet (Crinia sloanei) in peri-urban environments\",\"authors\":\"Alexandra R. Knight, Robyn J. Watts, Catherine Allan, Simon McDonald, Natasha Lappin\",\"doi\":\"10.1071/wr23032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong> Context</strong><p>Determining and quantifying habitat selection of endangered species in peri-urban environments assists planners and managers to develop strategies and alternative conservation measures in the face of urban expansion and development. Sloane’s Froglet (<i>Crinia sloanei</i>), listed nationally as endangered in Australia, is a little-known species distributed within peri-urban environments, where foundational ecological information and the development of adequate conservation responses has been lacking.</p><strong> Aims</strong><p>(a) To determine a core calling period for Sloane’s Froglet and detection probabilities for occupancy surveys. (b) To understand and characterise the habitat that Sloane’s Froglet uses at the wetland and microhabitat scale.</p><strong> Methods</strong><p>We used generalised linear modelling and the information-theoretic approach to model habitat preferences for this species at two scales: the waterbody scale, and the microhabitat scale. We quantified the habitat characteristics of waterbodies occupied by Sloane’s Froglet in winter, its peak breeding period, by measuring the biophysical characteristics of 54 occupied and 40 unoccupied waterbodies. The microhabitat and relative spatial positioning of Sloane’s Froglet within waterbodies was examined at 54 calling sites in an area of one m squared around individual male Sloane’s Froglets and 57 randomly selected unused sites. Wetlands were surveyed multiple times to determine detection probabilities.</p><strong> Key results</strong><p>Model selection indicated that Sloane’s Froglet is 450 times more likely to occupy a waterbody when an adjacent ephemeral shallow overflow is present; and are more likely to be present when there is greater cover of small stem-diameter emergent vegetation and less bare ground on the bank. The microhabitat investigation of one m squared sites showed that Sloane’s Froglet’s calling sites are predominantly inundated, and at significantly shallower water depths, than unused sites. Sloane’s Froglet was found to always call from within the waterbody, distinguishing them from other sympatric <i>Crinia</i> species.</p><strong> Conclusions</strong><p>The habitat characteristics detailed provide information necessary for the management of Sloane’s Froglet and its habitat.</p><strong> Implications</strong><p>Housing and industrial development is occurring rapidly in Sloane’s Froglet habitat. The information provided here can be used to refine local and state government planning and better design appropriate responses. Indeed, results from this study are currently being used by agencies and environmental consultants when developing conservation plans and in the design of stormwater retention ponds in rapidly urbanising environments.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/wr23032\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/wr23032","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Habitat features important for the conservation of the endangered Sloane’s Froglet (Crinia sloanei) in peri-urban environments
Context
Determining and quantifying habitat selection of endangered species in peri-urban environments assists planners and managers to develop strategies and alternative conservation measures in the face of urban expansion and development. Sloane’s Froglet (Crinia sloanei), listed nationally as endangered in Australia, is a little-known species distributed within peri-urban environments, where foundational ecological information and the development of adequate conservation responses has been lacking.
Aims
(a) To determine a core calling period for Sloane’s Froglet and detection probabilities for occupancy surveys. (b) To understand and characterise the habitat that Sloane’s Froglet uses at the wetland and microhabitat scale.
Methods
We used generalised linear modelling and the information-theoretic approach to model habitat preferences for this species at two scales: the waterbody scale, and the microhabitat scale. We quantified the habitat characteristics of waterbodies occupied by Sloane’s Froglet in winter, its peak breeding period, by measuring the biophysical characteristics of 54 occupied and 40 unoccupied waterbodies. The microhabitat and relative spatial positioning of Sloane’s Froglet within waterbodies was examined at 54 calling sites in an area of one m squared around individual male Sloane’s Froglets and 57 randomly selected unused sites. Wetlands were surveyed multiple times to determine detection probabilities.
Key results
Model selection indicated that Sloane’s Froglet is 450 times more likely to occupy a waterbody when an adjacent ephemeral shallow overflow is present; and are more likely to be present when there is greater cover of small stem-diameter emergent vegetation and less bare ground on the bank. The microhabitat investigation of one m squared sites showed that Sloane’s Froglet’s calling sites are predominantly inundated, and at significantly shallower water depths, than unused sites. Sloane’s Froglet was found to always call from within the waterbody, distinguishing them from other sympatric Crinia species.
Conclusions
The habitat characteristics detailed provide information necessary for the management of Sloane’s Froglet and its habitat.
Implications
Housing and industrial development is occurring rapidly in Sloane’s Froglet habitat. The information provided here can be used to refine local and state government planning and better design appropriate responses. Indeed, results from this study are currently being used by agencies and environmental consultants when developing conservation plans and in the design of stormwater retention ponds in rapidly urbanising environments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.