三色图着色的指数时间近似法

Venkatesan Guruswami, Rhea Jain
{"title":"三色图着色的指数时间近似法","authors":"Venkatesan Guruswami, Rhea Jain","doi":"arxiv-2406.15563","DOIUrl":null,"url":null,"abstract":"The problem of efficiently coloring $3$-colorable graphs with few colors has\nreceived much attention on both the algorithmic and inapproximability fronts.\nWe consider exponential time approximations, in which given a parameter $r$, we\naim to develop an $r$-approximation algorithm with the best possible runtime,\nproviding a tradeoff between runtime and approximation ratio. In this vein, an\nalgorithm to $O(n^\\varepsilon)$-color a 3-colorable graphs in time\n$2^{\\Theta(n^{1-2\\varepsilon}\\log(n))}$ is given in (Atserias and Dalmau, SODA\n2022.) We build on tools developed in (Bansal et al., Algorithmic, 2019) to obtain\nan algorithm to color $3$-colorable graphs with $O(r)$ colors in\n$\\exp\\left(\\tilde{O}\\left(\\frac {n\\log^{11/2}r} {r^3}\\right)\\right)$ time,\nasymptotically improving upon the bound given by Atserias and Dalmau.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Time Approximation for Coloring 3-Colorable Graphs\",\"authors\":\"Venkatesan Guruswami, Rhea Jain\",\"doi\":\"arxiv-2406.15563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of efficiently coloring $3$-colorable graphs with few colors has\\nreceived much attention on both the algorithmic and inapproximability fronts.\\nWe consider exponential time approximations, in which given a parameter $r$, we\\naim to develop an $r$-approximation algorithm with the best possible runtime,\\nproviding a tradeoff between runtime and approximation ratio. In this vein, an\\nalgorithm to $O(n^\\\\varepsilon)$-color a 3-colorable graphs in time\\n$2^{\\\\Theta(n^{1-2\\\\varepsilon}\\\\log(n))}$ is given in (Atserias and Dalmau, SODA\\n2022.) We build on tools developed in (Bansal et al., Algorithmic, 2019) to obtain\\nan algorithm to color $3$-colorable graphs with $O(r)$ colors in\\n$\\\\exp\\\\left(\\\\tilde{O}\\\\left(\\\\frac {n\\\\log^{11/2}r} {r^3}\\\\right)\\\\right)$ time,\\nasymptotically improving upon the bound given by Atserias and Dalmau.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.15563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑指数时间近似,在给定参数 $r$ 的情况下,我们希望开发一种具有最佳运行时间的 $r$ 近似算法,在运行时间和近似率之间做出权衡。在这一思路下,(Atserias and Dalmau, SODA2022.)中给出了在时间$2^{\Theta(n{1-2\varepsilon}\log(n))}$内对三色图进行$O(n^\varepsilon)$着色的类似算法、Algorithmic, 2019)中开发的工具,在$exp\left(\tilde{O}\left(\frac {n\log^{11/2}r} {r^3}\right)\right)$时间内,获得了一种用$O(r)$颜色给$3$可着色图着色的算法,渐进地改进了Atserias和Dalmau给出的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential Time Approximation for Coloring 3-Colorable Graphs
The problem of efficiently coloring $3$-colorable graphs with few colors has received much attention on both the algorithmic and inapproximability fronts. We consider exponential time approximations, in which given a parameter $r$, we aim to develop an $r$-approximation algorithm with the best possible runtime, providing a tradeoff between runtime and approximation ratio. In this vein, an algorithm to $O(n^\varepsilon)$-color a 3-colorable graphs in time $2^{\Theta(n^{1-2\varepsilon}\log(n))}$ is given in (Atserias and Dalmau, SODA 2022.) We build on tools developed in (Bansal et al., Algorithmic, 2019) to obtain an algorithm to color $3$-colorable graphs with $O(r)$ colors in $\exp\left(\tilde{O}\left(\frac {n\log^{11/2}r} {r^3}\right)\right)$ time, asymptotically improving upon the bound given by Atserias and Dalmau.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信