阿贝尔沙堆模型诱发的多面体自然度量

Andrea SportielloLIPN, and CNRS, Université Sorbonne Paris Nord
{"title":"阿贝尔沙堆模型诱发的多面体自然度量","authors":"Andrea SportielloLIPN, and CNRS, Université Sorbonne Paris Nord","doi":"arxiv-2406.16418","DOIUrl":null,"url":null,"abstract":"We introduce a natural Boltzmann measure over polyominoes induced by boundary\navalanches in the Abelian Sandpile Model. Through the study of a suitable\nassociated process, we give an argument suggesting that the probability\ndistribution of the avalnche sizes has a power-law decay with exponent 3/2, in\ncontrast with the present understanding of bulk avalanches in the model (which\nhas some exponent between 1 and 5/4), and to the ordinary generating function\nof polyominoes (which is conjectured to have a logarithmic singularity, i.e.\nexponent 1). We provide some numerical evidence for our claims, and evaluate\nsome other statistical observables on our process, most notably the density of\ntriple points.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Measures on Polyominoes Induced by the Abelian Sandpile Model\",\"authors\":\"Andrea SportielloLIPN, and CNRS, Université Sorbonne Paris Nord\",\"doi\":\"arxiv-2406.16418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a natural Boltzmann measure over polyominoes induced by boundary\\navalanches in the Abelian Sandpile Model. Through the study of a suitable\\nassociated process, we give an argument suggesting that the probability\\ndistribution of the avalnche sizes has a power-law decay with exponent 3/2, in\\ncontrast with the present understanding of bulk avalanches in the model (which\\nhas some exponent between 1 and 5/4), and to the ordinary generating function\\nof polyominoes (which is conjectured to have a logarithmic singularity, i.e.\\nexponent 1). We provide some numerical evidence for our claims, and evaluate\\nsome other statistical observables on our process, most notably the density of\\ntriple points.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.16418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在阿贝尔沙堆模型(Abelian Sandpile Model)中引入了由边界崩塌诱发的多面体自然玻尔兹曼量度。通过对一个合适的相关过程的研究,我们给出了一个论据,表明雪崩大小的概率分布具有指数为 3/2 的幂律衰减,这与目前对模型中大块雪崩的理解(其指数介于 1 和 5/4 之间)以及多面体的普通生成函数(据猜测具有对数奇点,即指数为 1)形成了对比。我们为我们的说法提供了一些数字证据,并评估了我们过程中的一些其他统计观测指标,最值得注意的是三重点的密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural Measures on Polyominoes Induced by the Abelian Sandpile Model
We introduce a natural Boltzmann measure over polyominoes induced by boundary avalanches in the Abelian Sandpile Model. Through the study of a suitable associated process, we give an argument suggesting that the probability distribution of the avalnche sizes has a power-law decay with exponent 3/2, in contrast with the present understanding of bulk avalanches in the model (which has some exponent between 1 and 5/4), and to the ordinary generating function of polyominoes (which is conjectured to have a logarithmic singularity, i.e. exponent 1). We provide some numerical evidence for our claims, and evaluate some other statistical observables on our process, most notably the density of triple points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信