局部一致性的周期结构

Lorenzo Ciardo, Stanislav Živný
{"title":"局部一致性的周期结构","authors":"Lorenzo Ciardo, Stanislav Živný","doi":"arxiv-2406.19685","DOIUrl":null,"url":null,"abstract":"We connect the mixing behaviour of random walks over a graph to the power of\nthe local-consistency algorithm for the solution of the corresponding\nconstraint satisfaction problem (CSP). We extend this connection to arbitrary\nCSPs and their promise variant. In this way, we establish a linear-level (and,\nthus, optimal) lower bound against the local-consistency algorithm applied to\nthe class of aperiodic promise CSPs. The proof is based on a combination of the\nprobabilistic method for random Erd\\H{o}s-R\\'enyi hypergraphs and a structural\nresult on the number of fibers (i.e., long chains of hyperedges) in sparse\nhypergraphs of large girth. As a corollary, we completely classify the power of\nlocal consistency for the approximate graph homomorphism problem by\nestablishing that, in the nontrivial cases, the problem has linear width.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The periodic structure of local consistency\",\"authors\":\"Lorenzo Ciardo, Stanislav Živný\",\"doi\":\"arxiv-2406.19685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We connect the mixing behaviour of random walks over a graph to the power of\\nthe local-consistency algorithm for the solution of the corresponding\\nconstraint satisfaction problem (CSP). We extend this connection to arbitrary\\nCSPs and their promise variant. In this way, we establish a linear-level (and,\\nthus, optimal) lower bound against the local-consistency algorithm applied to\\nthe class of aperiodic promise CSPs. The proof is based on a combination of the\\nprobabilistic method for random Erd\\\\H{o}s-R\\\\'enyi hypergraphs and a structural\\nresult on the number of fibers (i.e., long chains of hyperedges) in sparse\\nhypergraphs of large girth. As a corollary, we completely classify the power of\\nlocal consistency for the approximate graph homomorphism problem by\\nestablishing that, in the nontrivial cases, the problem has linear width.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将图上随机行走的混合行为与解决相应约束满足问题(CSP)的局部一致性算法的能力联系起来。我们将这种联系扩展到任意 CSP 及其承诺变体。通过这种方法,我们针对应用于非周期性承诺 CSP 类的局部一致性算法建立了线性级(因此也是最优的)下限。证明基于随机 Erd\H{o}s-R\'enyi 超图的概率方法和大周长稀疏超图中纤维(即超桥的长链)数量的结构性结果。作为推论,我们通过证明在非微观情况下,近似图同态问题具有线性宽度,对近似图同态问题的局部一致性能力进行了完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The periodic structure of local consistency
We connect the mixing behaviour of random walks over a graph to the power of the local-consistency algorithm for the solution of the corresponding constraint satisfaction problem (CSP). We extend this connection to arbitrary CSPs and their promise variant. In this way, we establish a linear-level (and, thus, optimal) lower bound against the local-consistency algorithm applied to the class of aperiodic promise CSPs. The proof is based on a combination of the probabilistic method for random Erd\H{o}s-R\'enyi hypergraphs and a structural result on the number of fibers (i.e., long chains of hyperedges) in sparse hypergraphs of large girth. As a corollary, we completely classify the power of local consistency for the approximate graph homomorphism problem by establishing that, in the nontrivial cases, the problem has linear width.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信