弱马丁格尔输运的数字变化

Mathias Beiglböck, Gudmund Pammer, Lorenz Riess
{"title":"弱马丁格尔输运的数字变化","authors":"Mathias Beiglböck, Gudmund Pammer, Lorenz Riess","doi":"arxiv-2406.07523","DOIUrl":null,"url":null,"abstract":"Change of numeraire is a classical tool in mathematical finance.\nCampi-Laachir-Martini established its applicability to martingale optimal\ntransport. We note that the results of Campi-Laachir-Martini extend to the case\nof weak martingale transport. We apply this to shadow couplings, continuous\ntime martingale transport problems in the framework of Huesmann-Trevisan and in\nparticular to establish the correspondence between stretched Brownian motion\nwith its geometric counterpart. Note: We emphasize that we learned about the geometric stretched Brownian\nmotion gSBM (defined in PDE terms) in a presentation of Loeper \\cite{Lo23}\nbefore our work on this topic started. We noticed that a change of numeraire\ntransformation in the spirit of \\cite{CaLaMa14} allows for an alternative\nviewpoint in the weak optimal transport framework. We make our work public\nfollowing the publication of Backhoff-Loeper-Obloj's work \\cite{BaLoOb24} on\narxiv.org. The article \\cite{BaLoOb24} derives gSBM using PDE techniques as\nwell as through an independent probabilistic approach which is close to the one\nwe give in the present article.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Change of numeraire for weak martingale transport\",\"authors\":\"Mathias Beiglböck, Gudmund Pammer, Lorenz Riess\",\"doi\":\"arxiv-2406.07523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Change of numeraire is a classical tool in mathematical finance.\\nCampi-Laachir-Martini established its applicability to martingale optimal\\ntransport. We note that the results of Campi-Laachir-Martini extend to the case\\nof weak martingale transport. We apply this to shadow couplings, continuous\\ntime martingale transport problems in the framework of Huesmann-Trevisan and in\\nparticular to establish the correspondence between stretched Brownian motion\\nwith its geometric counterpart. Note: We emphasize that we learned about the geometric stretched Brownian\\nmotion gSBM (defined in PDE terms) in a presentation of Loeper \\\\cite{Lo23}\\nbefore our work on this topic started. We noticed that a change of numeraire\\ntransformation in the spirit of \\\\cite{CaLaMa14} allows for an alternative\\nviewpoint in the weak optimal transport framework. We make our work public\\nfollowing the publication of Backhoff-Loeper-Obloj's work \\\\cite{BaLoOb24} on\\narxiv.org. The article \\\\cite{BaLoOb24} derives gSBM using PDE techniques as\\nwell as through an independent probabilistic approach which is close to the one\\nwe give in the present article.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.07523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.07523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

坎皮-拉齐尔-马尔蒂尼(Campi-Laachir-Martini)将其应用于马丁格尔最优传输。我们注意到,Campi-Laachir-Martini 的结果扩展到了弱马氏输运的情况。我们将其应用于影子耦合、Huesmann-Trevisan 框架下的连续时间马氏输运问题,特别是建立了拉伸布朗运动与其几何对应物之间的对应关系。注:我们要强调的是,在我们开始本课题的研究之前,我们在 Loeper \cite{Lo23}的演讲中了解到了几何拉伸布朗运动 gSBM(用 PDE 术语定义)。我们注意到,本着 \cite{CaLaMa14}的精神,改变数值变换可以在弱最优传输框架中找到另一种视角。在 Backhoff-Loeper-Obloj 的研究成果发表之后,我们公开了我们的工作。这篇文章利用 PDE 技术以及一种独立的概率方法推导出了 gSBM,这种方法与我们在本文中给出的方法很接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Change of numeraire for weak martingale transport
Change of numeraire is a classical tool in mathematical finance. Campi-Laachir-Martini established its applicability to martingale optimal transport. We note that the results of Campi-Laachir-Martini extend to the case of weak martingale transport. We apply this to shadow couplings, continuous time martingale transport problems in the framework of Huesmann-Trevisan and in particular to establish the correspondence between stretched Brownian motion with its geometric counterpart. Note: We emphasize that we learned about the geometric stretched Brownian motion gSBM (defined in PDE terms) in a presentation of Loeper \cite{Lo23} before our work on this topic started. We noticed that a change of numeraire transformation in the spirit of \cite{CaLaMa14} allows for an alternative viewpoint in the weak optimal transport framework. We make our work public following the publication of Backhoff-Loeper-Obloj's work \cite{BaLoOb24} on arxiv.org. The article \cite{BaLoOb24} derives gSBM using PDE techniques as well as through an independent probabilistic approach which is close to the one we give in the present article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信