校准局部随机波动模型的强存在性和唯一性

Scander Mustapha
{"title":"校准局部随机波动模型的强存在性和唯一性","authors":"Scander Mustapha","doi":"arxiv-2406.14074","DOIUrl":null,"url":null,"abstract":"We study a two-dimensional McKean-Vlasov stochastic differential equation,\nwhose volatility coefficient depends on the conditional distribution of the\nsecond component with respect to the first component. We prove the strong\nexistence and uniqueness of the solution, establishing the well-posedness of a\ntwo-factor local stochastic volatility (LSV) model calibrated to the market\nprices of European call options. In the spirit of [Jourdain and Zhou, 2020,\nExistence of a calibrated regime switching local volatility model.], we assume\nthat the factor driving the volatility of the log-price takes finitely many\nvalues. Additionally, the propagation of chaos of the particle system is\nestablished, giving theoretical justification for the algorithm [Julien Guyon\nand Henry-Labord\\`ere, 2012, Being particular about calibration.].","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"357 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong existence and uniqueness of a calibrated local stochastic volatility model\",\"authors\":\"Scander Mustapha\",\"doi\":\"arxiv-2406.14074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a two-dimensional McKean-Vlasov stochastic differential equation,\\nwhose volatility coefficient depends on the conditional distribution of the\\nsecond component with respect to the first component. We prove the strong\\nexistence and uniqueness of the solution, establishing the well-posedness of a\\ntwo-factor local stochastic volatility (LSV) model calibrated to the market\\nprices of European call options. In the spirit of [Jourdain and Zhou, 2020,\\nExistence of a calibrated regime switching local volatility model.], we assume\\nthat the factor driving the volatility of the log-price takes finitely many\\nvalues. Additionally, the propagation of chaos of the particle system is\\nestablished, giving theoretical justification for the algorithm [Julien Guyon\\nand Henry-Labord\\\\`ere, 2012, Being particular about calibration.].\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"357 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.14074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个二维 McKean-Vlasov 随机微分方程,其波动系数取决于第二分量相对于第一分量的条件分布。我们证明了解的严格存在性和唯一性,从而建立了以欧式看涨期权市场价格为基准的双因素局部随机波动率(LSV)模型。本着[Jourdain 和 Zhou, 2020, Existence of a calibrated regime switching local volatility model.]的精神,我们假设驱动对数价格波动的因子取有限多个值。此外,粒子系统的混沌传播得到了证实,为算法提供了理论依据[Julien Guyonand Henry-Labord\`ere,2012,Being particular about calibration.]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong existence and uniqueness of a calibrated local stochastic volatility model
We study a two-dimensional McKean-Vlasov stochastic differential equation, whose volatility coefficient depends on the conditional distribution of the second component with respect to the first component. We prove the strong existence and uniqueness of the solution, establishing the well-posedness of a two-factor local stochastic volatility (LSV) model calibrated to the market prices of European call options. In the spirit of [Jourdain and Zhou, 2020, Existence of a calibrated regime switching local volatility model.], we assume that the factor driving the volatility of the log-price takes finitely many values. Additionally, the propagation of chaos of the particle system is established, giving theoretical justification for the algorithm [Julien Guyon and Henry-Labord\`ere, 2012, Being particular about calibration.].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信