{"title":"校准局部随机波动模型的强存在性和唯一性","authors":"Scander Mustapha","doi":"arxiv-2406.14074","DOIUrl":null,"url":null,"abstract":"We study a two-dimensional McKean-Vlasov stochastic differential equation,\nwhose volatility coefficient depends on the conditional distribution of the\nsecond component with respect to the first component. We prove the strong\nexistence and uniqueness of the solution, establishing the well-posedness of a\ntwo-factor local stochastic volatility (LSV) model calibrated to the market\nprices of European call options. In the spirit of [Jourdain and Zhou, 2020,\nExistence of a calibrated regime switching local volatility model.], we assume\nthat the factor driving the volatility of the log-price takes finitely many\nvalues. Additionally, the propagation of chaos of the particle system is\nestablished, giving theoretical justification for the algorithm [Julien Guyon\nand Henry-Labord\\`ere, 2012, Being particular about calibration.].","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"357 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong existence and uniqueness of a calibrated local stochastic volatility model\",\"authors\":\"Scander Mustapha\",\"doi\":\"arxiv-2406.14074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a two-dimensional McKean-Vlasov stochastic differential equation,\\nwhose volatility coefficient depends on the conditional distribution of the\\nsecond component with respect to the first component. We prove the strong\\nexistence and uniqueness of the solution, establishing the well-posedness of a\\ntwo-factor local stochastic volatility (LSV) model calibrated to the market\\nprices of European call options. In the spirit of [Jourdain and Zhou, 2020,\\nExistence of a calibrated regime switching local volatility model.], we assume\\nthat the factor driving the volatility of the log-price takes finitely many\\nvalues. Additionally, the propagation of chaos of the particle system is\\nestablished, giving theoretical justification for the algorithm [Julien Guyon\\nand Henry-Labord\\\\`ere, 2012, Being particular about calibration.].\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"357 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.14074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了一个二维 McKean-Vlasov 随机微分方程,其波动系数取决于第二分量相对于第一分量的条件分布。我们证明了解的严格存在性和唯一性,从而建立了以欧式看涨期权市场价格为基准的双因素局部随机波动率(LSV)模型。本着[Jourdain 和 Zhou, 2020, Existence of a calibrated regime switching local volatility model.]的精神,我们假设驱动对数价格波动的因子取有限多个值。此外,粒子系统的混沌传播得到了证实,为算法提供了理论依据[Julien Guyonand Henry-Labord\`ere,2012,Being particular about calibration.]。
Strong existence and uniqueness of a calibrated local stochastic volatility model
We study a two-dimensional McKean-Vlasov stochastic differential equation,
whose volatility coefficient depends on the conditional distribution of the
second component with respect to the first component. We prove the strong
existence and uniqueness of the solution, establishing the well-posedness of a
two-factor local stochastic volatility (LSV) model calibrated to the market
prices of European call options. In the spirit of [Jourdain and Zhou, 2020,
Existence of a calibrated regime switching local volatility model.], we assume
that the factor driving the volatility of the log-price takes finitely many
values. Additionally, the propagation of chaos of the particle system is
established, giving theoretical justification for the algorithm [Julien Guyon
and Henry-Labord\`ere, 2012, Being particular about calibration.].