{"title":"从模$p^m$$奇异形式理论的角度论 p-阿代尔西格尔-爱森斯坦数列","authors":"Siegfried Böcherer, Toshiyuki Kikuta","doi":"10.1007/s00229-024-01571-1","DOIUrl":null,"url":null,"abstract":"<p>We show that the <i>p</i>-adic Siegel–Eisenstein series of general degree attached to two kind of number sequences are both linear combinations of genus theta series of level dividing <i>p</i>, by applying the theory of mod <i>p</i>-power singular forms. As special cases of this result, we derive the results of Nagaoka and Katsurada–Nagaoka.\n</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"38 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On p-adic Siegel–Eisenstein series from a point of view of the theory of mod $$p^m$$ singular forms\",\"authors\":\"Siegfried Böcherer, Toshiyuki Kikuta\",\"doi\":\"10.1007/s00229-024-01571-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the <i>p</i>-adic Siegel–Eisenstein series of general degree attached to two kind of number sequences are both linear combinations of genus theta series of level dividing <i>p</i>, by applying the theory of mod <i>p</i>-power singular forms. As special cases of this result, we derive the results of Nagaoka and Katsurada–Nagaoka.\\n</p>\",\"PeriodicalId\":49887,\"journal\":{\"name\":\"Manuscripta Mathematica\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manuscripta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01571-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01571-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们通过应用模 p 幂奇异形式理论,证明了两种数列所附的一般度的 p-adic Siegel-Eisenstein 级数都是除以 p 的属 Theta 级数的线性组合。作为这一结果的特例,我们推导出了 Nagaoka 和 Katsurada-Nagaoka 的结果。
On p-adic Siegel–Eisenstein series from a point of view of the theory of mod $$p^m$$ singular forms
We show that the p-adic Siegel–Eisenstein series of general degree attached to two kind of number sequences are both linear combinations of genus theta series of level dividing p, by applying the theory of mod p-power singular forms. As special cases of this result, we derive the results of Nagaoka and Katsurada–Nagaoka.
期刊介绍:
manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.