相对完美的格林伯格变换和循环类图

Pub Date : 2024-06-17 DOI:10.1007/s00229-024-01576-w
Alessandra Bertapelle, Takashi Suzuki
{"title":"相对完美的格林伯格变换和循环类图","authors":"Alessandra Bertapelle, Takashi Suzuki","doi":"10.1007/s00229-024-01576-w","DOIUrl":null,"url":null,"abstract":"<p>Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The relatively perfect Greenberg transform and cycle class maps\",\"authors\":\"Alessandra Bertapelle, Takashi Suzuki\",\"doi\":\"10.1007/s00229-024-01576-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01576-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01576-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个在具有完美残差域的混合特征的完整离散估值环上的方案,格林伯格变换会在比特殊纤维更厚的残差域上产生一个新方案。在本文中,我们将把这种变换推广到不完全残差域的情况。然后,我们将构造一种定义在这种广义格林伯格变换上的循环类映射,它应用于半阿贝尔变种的内龙模型,在加藤和第二作者定义的相对完美邻近循环函子中取值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The relatively perfect Greenberg transform and cycle class maps

分享
查看原文
The relatively perfect Greenberg transform and cycle class maps

Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信