{"title":"相对完美的格林伯格变换和循环类图","authors":"Alessandra Bertapelle, Takashi Suzuki","doi":"10.1007/s00229-024-01576-w","DOIUrl":null,"url":null,"abstract":"<p>Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"16 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The relatively perfect Greenberg transform and cycle class maps\",\"authors\":\"Alessandra Bertapelle, Takashi Suzuki\",\"doi\":\"10.1007/s00229-024-01576-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.</p>\",\"PeriodicalId\":49887,\"journal\":{\"name\":\"Manuscripta Mathematica\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manuscripta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01576-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01576-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The relatively perfect Greenberg transform and cycle class maps
Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.
期刊介绍:
manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.