无人机飞行路径规划优化

IF 1.7 4区 计算机科学 Q3 TELECOMMUNICATIONS
Hui Li, Zhangpeng Qiu, Xiaoyi Han, Ming Zhang, Dan Liao, Haiyan Jin
{"title":"无人机飞行路径规划优化","authors":"Hui Li, Zhangpeng Qiu, Xiaoyi Han, Ming Zhang, Dan Liao, Haiyan Jin","doi":"10.1007/s11235-024-01167-w","DOIUrl":null,"url":null,"abstract":"<p>In modern warfare, the use of UAVs for reconnaissance, search and rescue missions is very common, and it is essential to plan the flight path of UAVs. However, in the face of complex battlefield environment, the existing flight path planning algorithms have the problems of long time consumption and unstable path. Therefore, this paper studies the UAV flight path planning optimization in complex battlefield environment. First, we construct the battlefield environment model. Then, by analyzing the UAV flight constraints existing in battlefield environment, the objective function is obtained. And the problem of UAV flight path planning optimization is transformed into a nonlinear combinatorial optimization problem. On this basis, an Adaptive Adjustment Flight Path Planning algorithm (AA-FPP) is proposed. The AA-FPP algorithm adaptively adjusts the absorption coefficient of fireflies by using chaotic strategy. It adjusts the control position updating formula by using time-varying inertia weight to enhance its global searching ability. Then, random factors based on Boltzmann selection strategy are introduced to perturb the iterative solutions in AA-FPP. It expands the search space of the path and enhances the convergence efficiency. Finally, simulation results show that the AA-FPP algorithm can successfully plan a flight path that reduces static/dynamic threat intensity. And it has greater advantages in path stability and planning time consumption.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV flight path planning optimization\",\"authors\":\"Hui Li, Zhangpeng Qiu, Xiaoyi Han, Ming Zhang, Dan Liao, Haiyan Jin\",\"doi\":\"10.1007/s11235-024-01167-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In modern warfare, the use of UAVs for reconnaissance, search and rescue missions is very common, and it is essential to plan the flight path of UAVs. However, in the face of complex battlefield environment, the existing flight path planning algorithms have the problems of long time consumption and unstable path. Therefore, this paper studies the UAV flight path planning optimization in complex battlefield environment. First, we construct the battlefield environment model. Then, by analyzing the UAV flight constraints existing in battlefield environment, the objective function is obtained. And the problem of UAV flight path planning optimization is transformed into a nonlinear combinatorial optimization problem. On this basis, an Adaptive Adjustment Flight Path Planning algorithm (AA-FPP) is proposed. The AA-FPP algorithm adaptively adjusts the absorption coefficient of fireflies by using chaotic strategy. It adjusts the control position updating formula by using time-varying inertia weight to enhance its global searching ability. Then, random factors based on Boltzmann selection strategy are introduced to perturb the iterative solutions in AA-FPP. It expands the search space of the path and enhances the convergence efficiency. Finally, simulation results show that the AA-FPP algorithm can successfully plan a flight path that reduces static/dynamic threat intensity. And it has greater advantages in path stability and planning time consumption.</p>\",\"PeriodicalId\":51194,\"journal\":{\"name\":\"Telecommunication Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11235-024-01167-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01167-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在现代战争中,使用无人机执行侦察、搜索和救援任务非常普遍,因此规划无人机的飞行路径至关重要。然而,面对复杂的战场环境,现有的飞行路径规划算法存在耗时长、路径不稳定等问题。因此,本文对复杂战场环境下的无人机飞行路径规划优化进行了研究。首先,我们构建了战场环境模型。然后,通过分析战场环境中存在的无人机飞行约束条件,得到目标函数。并将无人机飞行路径规划优化问题转化为非线性组合优化问题。在此基础上,提出了自适应调整飞行路径规划算法(AA-FPP)。AA-FPP 算法利用混沌策略自适应地调整萤火虫的吸收系数。它利用时变惯性权重调整控制位置更新公式,以增强其全局搜索能力。然后,在 AA-FPP 中引入基于玻尔兹曼选择策略的随机因素来扰动迭代解。它扩展了路径的搜索空间,提高了收敛效率。最后,仿真结果表明,AA-FPP 算法能成功规划出一条降低静态/动态威胁强度的飞行路径。而且它在路径稳定性和规划时间消耗方面具有更大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

UAV flight path planning optimization

UAV flight path planning optimization

In modern warfare, the use of UAVs for reconnaissance, search and rescue missions is very common, and it is essential to plan the flight path of UAVs. However, in the face of complex battlefield environment, the existing flight path planning algorithms have the problems of long time consumption and unstable path. Therefore, this paper studies the UAV flight path planning optimization in complex battlefield environment. First, we construct the battlefield environment model. Then, by analyzing the UAV flight constraints existing in battlefield environment, the objective function is obtained. And the problem of UAV flight path planning optimization is transformed into a nonlinear combinatorial optimization problem. On this basis, an Adaptive Adjustment Flight Path Planning algorithm (AA-FPP) is proposed. The AA-FPP algorithm adaptively adjusts the absorption coefficient of fireflies by using chaotic strategy. It adjusts the control position updating formula by using time-varying inertia weight to enhance its global searching ability. Then, random factors based on Boltzmann selection strategy are introduced to perturb the iterative solutions in AA-FPP. It expands the search space of the path and enhances the convergence efficiency. Finally, simulation results show that the AA-FPP algorithm can successfully plan a flight path that reduces static/dynamic threat intensity. And it has greater advantages in path stability and planning time consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Telecommunication Systems
Telecommunication Systems 工程技术-电信学
CiteScore
5.40
自引率
8.00%
发文量
105
审稿时长
6.0 months
期刊介绍: Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering: Performance Evaluation of Wide Area and Local Networks; Network Interconnection; Wire, wireless, Adhoc, mobile networks; Impact of New Services (economic and organizational impact); Fiberoptics and photonic switching; DSL, ADSL, cable TV and their impact; Design and Analysis Issues in Metropolitan Area Networks; Networking Protocols; Dynamics and Capacity Expansion of Telecommunication Systems; Multimedia Based Systems, Their Design Configuration and Impact; Configuration of Distributed Systems; Pricing for Networking and Telecommunication Services; Performance Analysis of Local Area Networks; Distributed Group Decision Support Systems; Configuring Telecommunication Systems with Reliability and Availability; Cost Benefit Analysis and Economic Impact of Telecommunication Systems; Standardization and Regulatory Issues; Security, Privacy and Encryption in Telecommunication Systems; Cellular, Mobile and Satellite Based Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信