FreeCG:为机器学习力场释放克莱布什-戈尔丹变换的设计空间

Shihao Shao, Haoran Geng, Qinghua Cui
{"title":"FreeCG:为机器学习力场释放克莱布什-戈尔丹变换的设计空间","authors":"Shihao Shao, Haoran Geng, Qinghua Cui","doi":"arxiv-2407.02263","DOIUrl":null,"url":null,"abstract":"The Clebsch-Gordan Transform (CG transform) effectively encodes many-body\ninteractions. Many studies have proven its accuracy in depicting atomic\nenvironments, although this comes with high computational needs. The\ncomputational burden of this challenge is hard to reduce due to the need for\npermutation equivariance, which limits the design space of the CG transform\nlayer. We show that, implementing the CG transform layer on\npermutation-invariant inputs allows complete freedom in the design of this\nlayer without affecting symmetry. Developing further on this premise, our idea\nis to create a CG transform layer that operates on permutation-invariant\nabstract edges generated from real edge information. We bring in group CG\ntransform with sparse path, abstract edges shuffling, and attention enhancer to\nform a powerful and efficient CG transform layer. Our method, known as FreeCG,\nachieves State-of-The-Art (SoTA) results in force prediction for MD17, rMD17,\nMD22, and property prediction in QM9 datasets with notable enhancement. It\nintroduces a novel paradigm for carrying out efficient and expressive CG\ntransform in future geometric neural network designs.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"209 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FreeCG: Free the Design Space of Clebsch-Gordan Transform for machine learning force field\",\"authors\":\"Shihao Shao, Haoran Geng, Qinghua Cui\",\"doi\":\"arxiv-2407.02263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Clebsch-Gordan Transform (CG transform) effectively encodes many-body\\ninteractions. Many studies have proven its accuracy in depicting atomic\\nenvironments, although this comes with high computational needs. The\\ncomputational burden of this challenge is hard to reduce due to the need for\\npermutation equivariance, which limits the design space of the CG transform\\nlayer. We show that, implementing the CG transform layer on\\npermutation-invariant inputs allows complete freedom in the design of this\\nlayer without affecting symmetry. Developing further on this premise, our idea\\nis to create a CG transform layer that operates on permutation-invariant\\nabstract edges generated from real edge information. We bring in group CG\\ntransform with sparse path, abstract edges shuffling, and attention enhancer to\\nform a powerful and efficient CG transform layer. Our method, known as FreeCG,\\nachieves State-of-The-Art (SoTA) results in force prediction for MD17, rMD17,\\nMD22, and property prediction in QM9 datasets with notable enhancement. It\\nintroduces a novel paradigm for carrying out efficient and expressive CG\\ntransform in future geometric neural network designs.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"209 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.02263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Clebsch-Gordan 变换(CG 变换)有效地编码了多体相互作用。许多研究已经证明了它在描述原子环境方面的准确性,不过这也带来了很高的计算需求。由于需要珀尔摩特等差数列,这限制了 CG 变换层的设计空间,因此很难减轻这一挑战的计算负担。我们的研究表明,在突变不变输入上实现 CG 变换层,可以在不影响对称性的情况下完全自由地设计该层。在此基础上进一步发展,我们的想法是创建一个 CG 变换层,对从真实边缘信息中生成的变异不变抽象边缘进行操作。我们将组 CG 变换与稀疏路径、抽象边缘洗牌和注意力增强器结合起来,形成了一个强大而高效的 CG 变换层。我们的方法被称为 FreeCG,在 MD17、rMD17、MD22 的力预测和 QM9 数据集的属性预测方面取得了最先进(SoTA)的结果,并有显著增强。它为在未来的几何神经网络设计中进行高效且富有表现力的 CG 变换引入了一种新的范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FreeCG: Free the Design Space of Clebsch-Gordan Transform for machine learning force field
The Clebsch-Gordan Transform (CG transform) effectively encodes many-body interactions. Many studies have proven its accuracy in depicting atomic environments, although this comes with high computational needs. The computational burden of this challenge is hard to reduce due to the need for permutation equivariance, which limits the design space of the CG transform layer. We show that, implementing the CG transform layer on permutation-invariant inputs allows complete freedom in the design of this layer without affecting symmetry. Developing further on this premise, our idea is to create a CG transform layer that operates on permutation-invariant abstract edges generated from real edge information. We bring in group CG transform with sparse path, abstract edges shuffling, and attention enhancer to form a powerful and efficient CG transform layer. Our method, known as FreeCG, achieves State-of-The-Art (SoTA) results in force prediction for MD17, rMD17, MD22, and property prediction in QM9 datasets with notable enhancement. It introduces a novel paradigm for carrying out efficient and expressive CG transform in future geometric neural network designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信