Emmanouil Alexis, Sebastian Espinel-Rios, Ioannis G. Kevrekidis, Jose L. Avalos
{"title":"加速感应和 PIDA 控制的生化实现","authors":"Emmanouil Alexis, Sebastian Espinel-Rios, Ioannis G. Kevrekidis, Jose L. Avalos","doi":"10.1101/2024.07.02.601775","DOIUrl":null,"url":null,"abstract":"Designing dependable, self-regulated biochemical systems has long posed a challenge in the field of Synthetic Biology. Here, we propose a realization of a Proportional- Integral-Derivative-Acceleration (PIDA) control scheme as a Chemical Reaction Network (CRN) governed by mass action kinetics. A constituent element of this architecture is a speed and acceleration biosensing mechanism we introduce and, subsequently, place within a feedback configuration. Our control scheme provides enhanced dynamic performance and robust steady-state tracking. In addition to our theoretical analysis, this is practically highlighted in both the deterministic and stochastic settings by regulating a specific biochemical process in-silico and drawing comparisons with a simpler PID controller.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical implementation of acceleration sensing and PIDA control\",\"authors\":\"Emmanouil Alexis, Sebastian Espinel-Rios, Ioannis G. Kevrekidis, Jose L. Avalos\",\"doi\":\"10.1101/2024.07.02.601775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing dependable, self-regulated biochemical systems has long posed a challenge in the field of Synthetic Biology. Here, we propose a realization of a Proportional- Integral-Derivative-Acceleration (PIDA) control scheme as a Chemical Reaction Network (CRN) governed by mass action kinetics. A constituent element of this architecture is a speed and acceleration biosensing mechanism we introduce and, subsequently, place within a feedback configuration. Our control scheme provides enhanced dynamic performance and robust steady-state tracking. In addition to our theoretical analysis, this is practically highlighted in both the deterministic and stochastic settings by regulating a specific biochemical process in-silico and drawing comparisons with a simpler PID controller.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.02.601775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.02.601775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biochemical implementation of acceleration sensing and PIDA control
Designing dependable, self-regulated biochemical systems has long posed a challenge in the field of Synthetic Biology. Here, we propose a realization of a Proportional- Integral-Derivative-Acceleration (PIDA) control scheme as a Chemical Reaction Network (CRN) governed by mass action kinetics. A constituent element of this architecture is a speed and acceleration biosensing mechanism we introduce and, subsequently, place within a feedback configuration. Our control scheme provides enhanced dynamic performance and robust steady-state tracking. In addition to our theoretical analysis, this is practically highlighted in both the deterministic and stochastic settings by regulating a specific biochemical process in-silico and drawing comparisons with a simpler PID controller.