Joao Francisco da Silva Filho, Larissa Braga Fernandes
{"title":"完整准山叶梯度孤子的共形几何","authors":"Joao Francisco da Silva Filho, Larissa Braga Fernandes","doi":"10.1007/s00013-024-02016-7","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this work is to study the conformal geometry of complete quasi Yamabe gradient solitons, which correspond to an interesting generalization for gradient Yamabe solitons. In this sense, we present a rigidity result for complete quasi Yamabe gradient solitons with constant scalar curvature. Moreover, we prove that quasi Yamabe gradient solitons can be conformally changed to constant scalar curvature.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 2","pages":"211 - 224"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal geometry of complete quasi Yamabe gradient solitons\",\"authors\":\"Joao Francisco da Silva Filho, Larissa Braga Fernandes\",\"doi\":\"10.1007/s00013-024-02016-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this work is to study the conformal geometry of complete quasi Yamabe gradient solitons, which correspond to an interesting generalization for gradient Yamabe solitons. In this sense, we present a rigidity result for complete quasi Yamabe gradient solitons with constant scalar curvature. Moreover, we prove that quasi Yamabe gradient solitons can be conformally changed to constant scalar curvature.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 2\",\"pages\":\"211 - 224\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02016-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02016-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Conformal geometry of complete quasi Yamabe gradient solitons
The purpose of this work is to study the conformal geometry of complete quasi Yamabe gradient solitons, which correspond to an interesting generalization for gradient Yamabe solitons. In this sense, we present a rigidity result for complete quasi Yamabe gradient solitons with constant scalar curvature. Moreover, we prove that quasi Yamabe gradient solitons can be conformally changed to constant scalar curvature.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.