完整准山叶梯度孤子的共形几何

IF 0.5 4区 数学 Q3 MATHEMATICS
Joao Francisco da Silva Filho, Larissa Braga Fernandes
{"title":"完整准山叶梯度孤子的共形几何","authors":"Joao Francisco da Silva Filho,&nbsp;Larissa Braga Fernandes","doi":"10.1007/s00013-024-02016-7","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this work is to study the conformal geometry of complete quasi Yamabe gradient solitons, which correspond to an interesting generalization for gradient Yamabe solitons. In this sense, we present a rigidity result for complete quasi Yamabe gradient solitons with constant scalar curvature. Moreover, we prove that quasi Yamabe gradient solitons can be conformally changed to constant scalar curvature.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal geometry of complete quasi Yamabe gradient solitons\",\"authors\":\"Joao Francisco da Silva Filho,&nbsp;Larissa Braga Fernandes\",\"doi\":\"10.1007/s00013-024-02016-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this work is to study the conformal geometry of complete quasi Yamabe gradient solitons, which correspond to an interesting generalization for gradient Yamabe solitons. In this sense, we present a rigidity result for complete quasi Yamabe gradient solitons with constant scalar curvature. Moreover, we prove that quasi Yamabe gradient solitons can be conformally changed to constant scalar curvature.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02016-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02016-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是研究完全准山边梯度孤子的共形几何,它对应于梯度山边孤子的一个有趣的泛化。在这个意义上,我们提出了具有恒定标量曲率的完全准山叶梯度孤子的刚性结果。此外,我们还证明了准山边梯度孤子可以保角地变为恒标量曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal geometry of complete quasi Yamabe gradient solitons

The purpose of this work is to study the conformal geometry of complete quasi Yamabe gradient solitons, which correspond to an interesting generalization for gradient Yamabe solitons. In this sense, we present a rigidity result for complete quasi Yamabe gradient solitons with constant scalar curvature. Moreover, we prove that quasi Yamabe gradient solitons can be conformally changed to constant scalar curvature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信