2 属模空间上的角周期轨道分离

John Rached
{"title":"2 属模空间上的角周期轨道分离","authors":"John Rached","doi":"arxiv-2406.19527","DOIUrl":null,"url":null,"abstract":"We prove a quantitative closing lemma for the horocycle flow induced by the\n$\\mathrm{SL}(2,\\mathbb{R})$-action on the moduli space of Abelian differentials\nwith a double-order zero on surfaces of genus 2. The proof proceeds via\nconstruction of a Margulis function measuring the discretized fractal dimension\nof separation of a horocycle orbit of a point from itself, in a direction\ntransverse to the $\\mathrm{SL}(2,\\mathbb{R})$-orbit. From this, we deduce that\nsmall transversal separation guarantees the existence of a nearby point with a\npseudo-Anosov in its Veech group. This is reminiscent of the initial dimension\nphases in Bourgain-Gamburd for random walks on compact groups,\nBourgain-Lindenstrauss-Furman-Mozes for quantitative equidistribution in tori,\nand quantitative equidistribution of horocycle flow for a product of\n$\\mathrm{SL}(2,\\mathbb{R})$ with itself due to Lindenstrauss-Mohammadi-Wang,\nand multiple other works.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of horocycle orbits on moduli space in genus 2\",\"authors\":\"John Rached\",\"doi\":\"arxiv-2406.19527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a quantitative closing lemma for the horocycle flow induced by the\\n$\\\\mathrm{SL}(2,\\\\mathbb{R})$-action on the moduli space of Abelian differentials\\nwith a double-order zero on surfaces of genus 2. The proof proceeds via\\nconstruction of a Margulis function measuring the discretized fractal dimension\\nof separation of a horocycle orbit of a point from itself, in a direction\\ntransverse to the $\\\\mathrm{SL}(2,\\\\mathbb{R})$-orbit. From this, we deduce that\\nsmall transversal separation guarantees the existence of a nearby point with a\\npseudo-Anosov in its Veech group. This is reminiscent of the initial dimension\\nphases in Bourgain-Gamburd for random walks on compact groups,\\nBourgain-Lindenstrauss-Furman-Mozes for quantitative equidistribution in tori,\\nand quantitative equidistribution of horocycle flow for a product of\\n$\\\\mathrm{SL}(2,\\\\mathbb{R})$ with itself due to Lindenstrauss-Mohammadi-Wang,\\nand multiple other works.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了2属曲面上双阶为零的阿贝尔微分模空间的$\mathrm{SL}(2,\mathbb{R})$作用所诱导的角循环流的定量闭合定理。证明的过程是通过构造一个马格里斯函数,测量一个点的角循环轨道在横向于 $\mathrm{SL}(2,\mathbb{R})$ 轨道的方向上与自身分离的离散分形维度。由此,我们推导出,小的横向分离保证了附近存在一个在其维奇群中具有伪阿诺索夫的点。这不禁让人联想到布尔干-甘布德(Bourgain-Gamburd)关于紧凑群上随机漫步的初始维阶段、布尔干-林登斯特劳斯-弗曼-莫兹(Bourgain-Lindenstrauss-Furman-Mozes)关于环中定量等分布的初始维阶段、林登斯特劳斯-莫哈马迪-王(Lindenstrauss-Mohammadi-Wang)关于$\mathrm{SL}(2,\mathbb{R})$与自身的乘积的角环流定量等分布的初始维阶段,以及其他多项工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separation of horocycle orbits on moduli space in genus 2
We prove a quantitative closing lemma for the horocycle flow induced by the $\mathrm{SL}(2,\mathbb{R})$-action on the moduli space of Abelian differentials with a double-order zero on surfaces of genus 2. The proof proceeds via construction of a Margulis function measuring the discretized fractal dimension of separation of a horocycle orbit of a point from itself, in a direction transverse to the $\mathrm{SL}(2,\mathbb{R})$-orbit. From this, we deduce that small transversal separation guarantees the existence of a nearby point with a pseudo-Anosov in its Veech group. This is reminiscent of the initial dimension phases in Bourgain-Gamburd for random walks on compact groups, Bourgain-Lindenstrauss-Furman-Mozes for quantitative equidistribution in tori, and quantitative equidistribution of horocycle flow for a product of $\mathrm{SL}(2,\mathbb{R})$ with itself due to Lindenstrauss-Mohammadi-Wang, and multiple other works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信