{"title":"作为群集的德尔霍姆-拉夫拉姆-普泽-绍尔空间","authors":"Oleksiy Dovgoshey, Alexander Kostikov","doi":"arxiv-2407.00508","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{R}^{+}=[0, \\infty)$ and let $d^+$ be the ultrametric on\n$\\mathbb{R}^+$ such that $d^+ (x,y) = \\max\\{x,y\\}$ for all different $x,y \\in\n\\mathbb{R}^+$. It is shown that the monomorphisms of the groupoid\n$(\\mathbb{R}^+, d^+)$ coincide with the injective ultrametric-preserving\nfunctions and that the automorphisms of $(\\mathbb{R}^+, d^+)$ coincide with the\nself-homeomorphisms of $\\mathbb{R}^+$. The structure of endomorphisms of\n$(\\mathbb{R}^+, d^+)$ is also described.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delhomme-Laflamme-Pouzet-Sauer space as groupoid\",\"authors\":\"Oleksiy Dovgoshey, Alexander Kostikov\",\"doi\":\"arxiv-2407.00508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbb{R}^{+}=[0, \\\\infty)$ and let $d^+$ be the ultrametric on\\n$\\\\mathbb{R}^+$ such that $d^+ (x,y) = \\\\max\\\\{x,y\\\\}$ for all different $x,y \\\\in\\n\\\\mathbb{R}^+$. It is shown that the monomorphisms of the groupoid\\n$(\\\\mathbb{R}^+, d^+)$ coincide with the injective ultrametric-preserving\\nfunctions and that the automorphisms of $(\\\\mathbb{R}^+, d^+)$ coincide with the\\nself-homeomorphisms of $\\\\mathbb{R}^+$. The structure of endomorphisms of\\n$(\\\\mathbb{R}^+, d^+)$ is also described.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $\mathbb{R}^{+}=[0, \infty)$ and let $d^+$ be the ultrametric on
$\mathbb{R}^+$ such that $d^+ (x,y) = \max\{x,y\}$ for all different $x,y \in
\mathbb{R}^+$. It is shown that the monomorphisms of the groupoid
$(\mathbb{R}^+, d^+)$ coincide with the injective ultrametric-preserving
functions and that the automorphisms of $(\mathbb{R}^+, d^+)$ coincide with the
self-homeomorphisms of $\mathbb{R}^+$. The structure of endomorphisms of
$(\mathbb{R}^+, d^+)$ is also described.