作为群集的德尔霍姆-拉夫拉姆-普泽-绍尔空间

Oleksiy Dovgoshey, Alexander Kostikov
{"title":"作为群集的德尔霍姆-拉夫拉姆-普泽-绍尔空间","authors":"Oleksiy Dovgoshey, Alexander Kostikov","doi":"arxiv-2407.00508","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{R}^{+}=[0, \\infty)$ and let $d^+$ be the ultrametric on\n$\\mathbb{R}^+$ such that $d^+ (x,y) = \\max\\{x,y\\}$ for all different $x,y \\in\n\\mathbb{R}^+$. It is shown that the monomorphisms of the groupoid\n$(\\mathbb{R}^+, d^+)$ coincide with the injective ultrametric-preserving\nfunctions and that the automorphisms of $(\\mathbb{R}^+, d^+)$ coincide with the\nself-homeomorphisms of $\\mathbb{R}^+$. The structure of endomorphisms of\n$(\\mathbb{R}^+, d^+)$ is also described.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delhomme-Laflamme-Pouzet-Sauer space as groupoid\",\"authors\":\"Oleksiy Dovgoshey, Alexander Kostikov\",\"doi\":\"arxiv-2407.00508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbb{R}^{+}=[0, \\\\infty)$ and let $d^+$ be the ultrametric on\\n$\\\\mathbb{R}^+$ such that $d^+ (x,y) = \\\\max\\\\{x,y\\\\}$ for all different $x,y \\\\in\\n\\\\mathbb{R}^+$. It is shown that the monomorphisms of the groupoid\\n$(\\\\mathbb{R}^+, d^+)$ coincide with the injective ultrametric-preserving\\nfunctions and that the automorphisms of $(\\\\mathbb{R}^+, d^+)$ coincide with the\\nself-homeomorphisms of $\\\\mathbb{R}^+$. The structure of endomorphisms of\\n$(\\\\mathbb{R}^+, d^+)$ is also described.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$mathbb{R}^{+}=[0, \infty)$,并设$d^+$是$mathbb{R}^^+$上的超对称,使得对于所有不同的$x,y (\in\mathbb{R}^^+$),$d^+ (x,y) = \max\{x,y\}$。研究表明,groupoid$(\mathbb{R}^+, d^+)$ 的单形变与注入超对称保留函数重合,而 $(\mathbb{R}^+, d^+)$ 的自形变与 $\mathbb{R}^+$ 的自同形变重合。同时还描述了$(\mathbb{R}^+, d^+)$ 的内同态结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delhomme-Laflamme-Pouzet-Sauer space as groupoid
Let $\mathbb{R}^{+}=[0, \infty)$ and let $d^+$ be the ultrametric on $\mathbb{R}^+$ such that $d^+ (x,y) = \max\{x,y\}$ for all different $x,y \in \mathbb{R}^+$. It is shown that the monomorphisms of the groupoid $(\mathbb{R}^+, d^+)$ coincide with the injective ultrametric-preserving functions and that the automorphisms of $(\mathbb{R}^+, d^+)$ coincide with the self-homeomorphisms of $\mathbb{R}^+$. The structure of endomorphisms of $(\mathbb{R}^+, d^+)$ is also described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信