用混合填料和离子液体增强天然橡胶纳米复合材料的性能

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Kriengsak Damampai, Skulrat Pichaiyut, Charoen Nakason
{"title":"用混合填料和离子液体增强天然橡胶纳米复合材料的性能","authors":"Kriengsak Damampai, Skulrat Pichaiyut, Charoen Nakason","doi":"10.1177/07316844241263196","DOIUrl":null,"url":null,"abstract":"Natural rubber (NR) nanocomposites were prepared by incorporating carbon nanotubes (CNTs), CNT/silver nanoparticles (AgNP) hybrid fillers, and CNT-AgNP in the presence of varying loadings of ionic liquid (IL). SEM micrographs confirmed the successful decoration of AgNP on CNT surfaces and the formation of filler networks, facilitated by connecting end-to-end CNT bundles with AgNP. The incorporation of CNTs into NR resulted in superior mechanical strength, initial modulus, torque difference, crosslink density, vulcanization rate, and electrical properties in contrast to the gum NR vulcanizate. The decoration of CNT surfaces with AgNP and their end-to-end connection further elevated these properties. Additionally, the introduction of IL to form NR/CNT-AgNP/IL nanocomposites accelerated the curing properties, evidenced by an increased cure rate index and reduced scorch and cure times. Incorporating 1 to 3 phr of IL significantly enhances mechanical, thermo-mechanical, torque difference, crosslink density, and associated properties. However, exceeding 3 phr leads to property deterioration due to notable formation of filler agglomerations and IL pools in the NR/CNT-AgNP/IL nanocomposites containing 5 and 7 phr of IL. In contrast, electrical conductivity continues to increase beyond the 3 phr IL threshold, attributed to the emergence of IL pools serving as a highly conductive electrolyte. Graphical abstract.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"9 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing properties of natural rubber nanocomposites with hybrid fillers and ionic liquid\",\"authors\":\"Kriengsak Damampai, Skulrat Pichaiyut, Charoen Nakason\",\"doi\":\"10.1177/07316844241263196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural rubber (NR) nanocomposites were prepared by incorporating carbon nanotubes (CNTs), CNT/silver nanoparticles (AgNP) hybrid fillers, and CNT-AgNP in the presence of varying loadings of ionic liquid (IL). SEM micrographs confirmed the successful decoration of AgNP on CNT surfaces and the formation of filler networks, facilitated by connecting end-to-end CNT bundles with AgNP. The incorporation of CNTs into NR resulted in superior mechanical strength, initial modulus, torque difference, crosslink density, vulcanization rate, and electrical properties in contrast to the gum NR vulcanizate. The decoration of CNT surfaces with AgNP and their end-to-end connection further elevated these properties. Additionally, the introduction of IL to form NR/CNT-AgNP/IL nanocomposites accelerated the curing properties, evidenced by an increased cure rate index and reduced scorch and cure times. Incorporating 1 to 3 phr of IL significantly enhances mechanical, thermo-mechanical, torque difference, crosslink density, and associated properties. However, exceeding 3 phr leads to property deterioration due to notable formation of filler agglomerations and IL pools in the NR/CNT-AgNP/IL nanocomposites containing 5 and 7 phr of IL. In contrast, electrical conductivity continues to increase beyond the 3 phr IL threshold, attributed to the emergence of IL pools serving as a highly conductive electrolyte. Graphical abstract.\",\"PeriodicalId\":16943,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844241263196\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241263196","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

通过加入碳纳米管 (CNT)、CNT/银纳米粒子 (AgNP) 混合填料以及 CNT-AgNP,在不同离子液体 (IL) 负载的存在下制备了天然橡胶 (NR) 纳米复合材料。扫描电子显微镜显微照片证实,AgNP 成功地装饰了 CNT 表面并形成了填料网络,AgNP 端对端连接 CNT 束促进了填料网络的形成。与胶状 NR 硫化物相比,将 CNT 加入 NR 中可获得更高的机械强度、初始模量、扭矩差、交联密度、硫化速率和电性能。用 AgNP 装饰 CNT 表面并使其端对端连接可进一步提高这些性能。此外,引入 IL 以形成 NR/CNT-AgNP/IL 纳米复合材料还可加快固化性能,具体表现为固化速率指数提高,焦烧和固化时间缩短。加入 1 至 3 phr 的 IL 可显著提高机械性能、热机械性能、扭矩差、交联密度和相关性能。然而,在含有 5 和 7 phr 的 IL 的 NR/CNT-AgNP/IL 纳米复合材料中,由于填料团聚和 IL 池的明显形成,超过 3 phr 会导致性能下降。相反,导电性在超过 3 phr IL 临界值后继续增加,这归因于作为高导电性电解质的 IL 池的出现。图解摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing properties of natural rubber nanocomposites with hybrid fillers and ionic liquid
Natural rubber (NR) nanocomposites were prepared by incorporating carbon nanotubes (CNTs), CNT/silver nanoparticles (AgNP) hybrid fillers, and CNT-AgNP in the presence of varying loadings of ionic liquid (IL). SEM micrographs confirmed the successful decoration of AgNP on CNT surfaces and the formation of filler networks, facilitated by connecting end-to-end CNT bundles with AgNP. The incorporation of CNTs into NR resulted in superior mechanical strength, initial modulus, torque difference, crosslink density, vulcanization rate, and electrical properties in contrast to the gum NR vulcanizate. The decoration of CNT surfaces with AgNP and their end-to-end connection further elevated these properties. Additionally, the introduction of IL to form NR/CNT-AgNP/IL nanocomposites accelerated the curing properties, evidenced by an increased cure rate index and reduced scorch and cure times. Incorporating 1 to 3 phr of IL significantly enhances mechanical, thermo-mechanical, torque difference, crosslink density, and associated properties. However, exceeding 3 phr leads to property deterioration due to notable formation of filler agglomerations and IL pools in the NR/CNT-AgNP/IL nanocomposites containing 5 and 7 phr of IL. In contrast, electrical conductivity continues to increase beyond the 3 phr IL threshold, attributed to the emergence of IL pools serving as a highly conductive electrolyte. Graphical abstract.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Reinforced Plastics and Composites
Journal of Reinforced Plastics and Composites 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.50%
发文量
82
审稿时长
1.3 months
期刊介绍: The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in: Constituent materials: matrix materials, reinforcements and coatings. Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference. Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition. Processing and fabrication: There is increased interest among materials engineers in cost-effective processing. Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation. Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials. "The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信