Karolina Czarny-Krzymińska, Barbara Krawczyk, Dominik Szczukocki
{"title":"双酚类似物及其混合物对两种淡水藻类小球藻(Chlorella vulgaris)和甲藻(Desmodesmus armatus)的毒性作用","authors":"Karolina Czarny-Krzymińska, Barbara Krawczyk, Dominik Szczukocki","doi":"10.1007/s10811-024-03289-9","DOIUrl":null,"url":null,"abstract":"<p>Bisphenol A (BPA) is an emerging organic compound used in the production of epoxy resin, polycarbonate plastics and thermal paper. Following the restrictions on the use of bisphenol A, many substitutes have been produced as its replacement in several consumer products. The main task of this research was to examine the toxic effects of single bisphenol analogues and their mixtures against freshwater microalgae <i>Chlorella vulgaris</i> and <i>Desmodesmus armatus</i>. The findings suggest that bisphenol B, bisphenol C, bisphenol PH (EC<sub>50</sub> (14 day): 33.32-43.32 mg L<sup>-1</sup>) and bisphenol B, bisphenol C, bisphenol FL, bisphenol PH (EC<sub>50</sub> (14 day): 30.49-64.54 mg L<sup>-1</sup>) show strong toxic effects towards <i>C. vulgaris</i> and <i>D. armatus</i>, respectively. In turn, the research results indicate that the toxicity of a mixture of examined bisphenol analogs on both species of green algae is much higher (EC<sub>50</sub> (14 day): 24.55-32.68 mg L<sup>-1</sup>) than the individual toxicity of each component of the mixture. Therefore, it can be concluded that mixtures lead to the occurrence of synergistic effects. The toxicity of the individual bisphenol analogues and their mixture by EC<sub>50</sub> (14 day) values in descending order, was as follows: mixture>bisphenol PH> bisphenol B> bisphenol C> bisphenol FL> bisphenol F> bisphenol E for <i>C. vulgaris</i> and bisphenol B> mixture> bisphenol FL> bisphenol C> bisphenol PH> bisphenol E> bisphenol F for <i>D. armatus</i>, respectively. Moreover, the present research expands current knowledge of the ecotoxicological risks of bisphenol analogues to aquatic organisms.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxic effects of bisphenol analogues and their mixture on two freshwater algae Chlorella vulgaris and Desmodesmus armatus\",\"authors\":\"Karolina Czarny-Krzymińska, Barbara Krawczyk, Dominik Szczukocki\",\"doi\":\"10.1007/s10811-024-03289-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bisphenol A (BPA) is an emerging organic compound used in the production of epoxy resin, polycarbonate plastics and thermal paper. Following the restrictions on the use of bisphenol A, many substitutes have been produced as its replacement in several consumer products. The main task of this research was to examine the toxic effects of single bisphenol analogues and their mixtures against freshwater microalgae <i>Chlorella vulgaris</i> and <i>Desmodesmus armatus</i>. The findings suggest that bisphenol B, bisphenol C, bisphenol PH (EC<sub>50</sub> (14 day): 33.32-43.32 mg L<sup>-1</sup>) and bisphenol B, bisphenol C, bisphenol FL, bisphenol PH (EC<sub>50</sub> (14 day): 30.49-64.54 mg L<sup>-1</sup>) show strong toxic effects towards <i>C. vulgaris</i> and <i>D. armatus</i>, respectively. In turn, the research results indicate that the toxicity of a mixture of examined bisphenol analogs on both species of green algae is much higher (EC<sub>50</sub> (14 day): 24.55-32.68 mg L<sup>-1</sup>) than the individual toxicity of each component of the mixture. Therefore, it can be concluded that mixtures lead to the occurrence of synergistic effects. The toxicity of the individual bisphenol analogues and their mixture by EC<sub>50</sub> (14 day) values in descending order, was as follows: mixture>bisphenol PH> bisphenol B> bisphenol C> bisphenol FL> bisphenol F> bisphenol E for <i>C. vulgaris</i> and bisphenol B> mixture> bisphenol FL> bisphenol C> bisphenol PH> bisphenol E> bisphenol F for <i>D. armatus</i>, respectively. Moreover, the present research expands current knowledge of the ecotoxicological risks of bisphenol analogues to aquatic organisms.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10811-024-03289-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10811-024-03289-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
双酚 A(BPA)是一种新出现的有机化合物,用于生产环氧树脂、聚碳酸酯塑料和热敏纸。在限制使用双酚 A 之后,许多消费品中都出现了双酚 A 的替代品。这项研究的主要任务是检测单一双酚类似物及其混合物对淡水微藻小球藻和沼泽藻的毒性影响。研究结果表明,双酚 B、双酚 C、双酚 PH(EC50(14 天):33.32-43.32 毫克/升-1)和双酚 B、双酚 C、双酚 FL、双酚 PH(EC50(14 天):30.49-64.54 毫克/升-1):30.49-64.54 mg L-1)分别对 C. vulgaris 和 D. armatus 有强烈的毒性作用。研究结果表明,双酚类似物混合物对这两种绿藻的毒性更高(EC50(14 天):24.55-32.68 毫克/升-1):24.55-32.68 毫克/升-1)远高于混合物中每种成分的单独毒性。因此可以得出结论,混合物会产生协同效应。按 EC50(14 天)值从高到低的顺序排列,单个双酚类似物及其混合物的毒性如下:混合物>双酚 PH>双酚 B> 双酚 C> 双酚 FL> 双酚 F> 双酚 E 对 C..和 D. armatus 的双酚 B> 混合物> 双酚 FL> 双酚 C> 双酚 PH> 双酚 E> 双酚 F。此外,本研究还扩展了目前关于双酚类似物对水生生物生态毒理学风险的知识。
Toxic effects of bisphenol analogues and their mixture on two freshwater algae Chlorella vulgaris and Desmodesmus armatus
Bisphenol A (BPA) is an emerging organic compound used in the production of epoxy resin, polycarbonate plastics and thermal paper. Following the restrictions on the use of bisphenol A, many substitutes have been produced as its replacement in several consumer products. The main task of this research was to examine the toxic effects of single bisphenol analogues and their mixtures against freshwater microalgae Chlorella vulgaris and Desmodesmus armatus. The findings suggest that bisphenol B, bisphenol C, bisphenol PH (EC50 (14 day): 33.32-43.32 mg L-1) and bisphenol B, bisphenol C, bisphenol FL, bisphenol PH (EC50 (14 day): 30.49-64.54 mg L-1) show strong toxic effects towards C. vulgaris and D. armatus, respectively. In turn, the research results indicate that the toxicity of a mixture of examined bisphenol analogs on both species of green algae is much higher (EC50 (14 day): 24.55-32.68 mg L-1) than the individual toxicity of each component of the mixture. Therefore, it can be concluded that mixtures lead to the occurrence of synergistic effects. The toxicity of the individual bisphenol analogues and their mixture by EC50 (14 day) values in descending order, was as follows: mixture>bisphenol PH> bisphenol B> bisphenol C> bisphenol FL> bisphenol F> bisphenol E for C. vulgaris and bisphenol B> mixture> bisphenol FL> bisphenol C> bisphenol PH> bisphenol E> bisphenol F for D. armatus, respectively. Moreover, the present research expands current knowledge of the ecotoxicological risks of bisphenol analogues to aquatic organisms.