{"title":"压力情景下住房市场大型投资者的最佳投资组合:最坏情况下的方法","authors":"Bilgi Yilmaz","doi":"10.1007/s10614-024-10660-y","DOIUrl":null,"url":null,"abstract":"<p>The study focuses on constructing a mathematical housing market threatened by a major catastrophic event or crash. It incorporates the worst-case scenario portfolio optimization problem as introduced in Korn and Wilmott (Int J Theor Appl Finance 5(02):171–187, 2002) into housing markets. The standard stochastic models for housing markets assume a geometric Brownian motion and neglect sudden housing price falls during crash times. However, the size, timing, and frequency of crashes have to be included in such models. By incorporating the worst-case portfolio optimization problem into housing markets, this study introduces a methodology to construct portfolios for large investors that are robust and resilient to extreme housing market conditions. The worst-case portfolio optimization approach can be used in housing markets to incorporate stress scenarios, minimize potential losses, utilize mathematical techniques, and manage housing investment risk effectively. This study provides valuable insights for large investors seeking to construct housing portfolios prioritizing downside protection and minimizing losses in extreme housing market conditions. Utilizing numerical illustrations, it provides insights into portfolio construction, demonstrating the effectiveness of adjusting portfolios to mitigate downside risks during housing market crises. The results highlight dynamic portfolio management’s significance in safeguarding wealth when housing prices undergo significant fluctuations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"5 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Portfolios for Large Investors in Housing Markets Under Stress Scenarios: A Worst-Case Approach\",\"authors\":\"Bilgi Yilmaz\",\"doi\":\"10.1007/s10614-024-10660-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study focuses on constructing a mathematical housing market threatened by a major catastrophic event or crash. It incorporates the worst-case scenario portfolio optimization problem as introduced in Korn and Wilmott (Int J Theor Appl Finance 5(02):171–187, 2002) into housing markets. The standard stochastic models for housing markets assume a geometric Brownian motion and neglect sudden housing price falls during crash times. However, the size, timing, and frequency of crashes have to be included in such models. By incorporating the worst-case portfolio optimization problem into housing markets, this study introduces a methodology to construct portfolios for large investors that are robust and resilient to extreme housing market conditions. The worst-case portfolio optimization approach can be used in housing markets to incorporate stress scenarios, minimize potential losses, utilize mathematical techniques, and manage housing investment risk effectively. This study provides valuable insights for large investors seeking to construct housing portfolios prioritizing downside protection and minimizing losses in extreme housing market conditions. Utilizing numerical illustrations, it provides insights into portfolio construction, demonstrating the effectiveness of adjusting portfolios to mitigate downside risks during housing market crises. The results highlight dynamic portfolio management’s significance in safeguarding wealth when housing prices undergo significant fluctuations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10660-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10660-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimal Portfolios for Large Investors in Housing Markets Under Stress Scenarios: A Worst-Case Approach
The study focuses on constructing a mathematical housing market threatened by a major catastrophic event or crash. It incorporates the worst-case scenario portfolio optimization problem as introduced in Korn and Wilmott (Int J Theor Appl Finance 5(02):171–187, 2002) into housing markets. The standard stochastic models for housing markets assume a geometric Brownian motion and neglect sudden housing price falls during crash times. However, the size, timing, and frequency of crashes have to be included in such models. By incorporating the worst-case portfolio optimization problem into housing markets, this study introduces a methodology to construct portfolios for large investors that are robust and resilient to extreme housing market conditions. The worst-case portfolio optimization approach can be used in housing markets to incorporate stress scenarios, minimize potential losses, utilize mathematical techniques, and manage housing investment risk effectively. This study provides valuable insights for large investors seeking to construct housing portfolios prioritizing downside protection and minimizing losses in extreme housing market conditions. Utilizing numerical illustrations, it provides insights into portfolio construction, demonstrating the effectiveness of adjusting portfolios to mitigate downside risks during housing market crises. The results highlight dynamic portfolio management’s significance in safeguarding wealth when housing prices undergo significant fluctuations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.