{"title":"通过有限元模拟对十字形样品进行双轴拉伸测试以确定预应变对铝合金 5052 成型极限图的影响","authors":"Shrutee Pradeep Pawar, Pavan Kumar, K. Narasimhan","doi":"10.1088/1757-899x/1307/1/012013","DOIUrl":null,"url":null,"abstract":"The present work focuses on the effect of pre-strain on the forming limit curves (FLCs) of aluminium alloy 5052 sheet of 2.5 mm thickness using cruciform samples. To identify the effect of pre-strain on the FLC, the finite element simulations are performed on cruciform samples. The cruciform samples are deformed to a small level of pre-strain in different strain paths. Thereafter, the further deformation under the various strain paths to measure the effect of pre-strain on the forming limits are carried out. Pre-strain in uniaxial, plane strain and biaxial loading conditions are considered in this work. For each case, i.e., uniaxial, plane strain and biaxial conditions two pre-strain conditions are considered. The cruciform samples are carefully thinned in the central region to promote development of large plastic strains there and eventually to neck and fail. The output obtained through simulations are presented in terms of forming limit curves for various strain paths.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biaxial Tensile Testing of Cruciform Samples to Determine the Impact of Pre-Strain on the Forming Limit Diagram of Aluminum Alloy 5052 through Finite Element Simulation\",\"authors\":\"Shrutee Pradeep Pawar, Pavan Kumar, K. Narasimhan\",\"doi\":\"10.1088/1757-899x/1307/1/012013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work focuses on the effect of pre-strain on the forming limit curves (FLCs) of aluminium alloy 5052 sheet of 2.5 mm thickness using cruciform samples. To identify the effect of pre-strain on the FLC, the finite element simulations are performed on cruciform samples. The cruciform samples are deformed to a small level of pre-strain in different strain paths. Thereafter, the further deformation under the various strain paths to measure the effect of pre-strain on the forming limits are carried out. Pre-strain in uniaxial, plane strain and biaxial loading conditions are considered in this work. For each case, i.e., uniaxial, plane strain and biaxial conditions two pre-strain conditions are considered. The cruciform samples are carefully thinned in the central region to promote development of large plastic strains there and eventually to neck and fail. The output obtained through simulations are presented in terms of forming limit curves for various strain paths.\",\"PeriodicalId\":14483,\"journal\":{\"name\":\"IOP Conference Series: Materials Science and Engineering\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1757-899x/1307/1/012013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1307/1/012013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biaxial Tensile Testing of Cruciform Samples to Determine the Impact of Pre-Strain on the Forming Limit Diagram of Aluminum Alloy 5052 through Finite Element Simulation
The present work focuses on the effect of pre-strain on the forming limit curves (FLCs) of aluminium alloy 5052 sheet of 2.5 mm thickness using cruciform samples. To identify the effect of pre-strain on the FLC, the finite element simulations are performed on cruciform samples. The cruciform samples are deformed to a small level of pre-strain in different strain paths. Thereafter, the further deformation under the various strain paths to measure the effect of pre-strain on the forming limits are carried out. Pre-strain in uniaxial, plane strain and biaxial loading conditions are considered in this work. For each case, i.e., uniaxial, plane strain and biaxial conditions two pre-strain conditions are considered. The cruciform samples are carefully thinned in the central region to promote development of large plastic strains there and eventually to neck and fail. The output obtained through simulations are presented in terms of forming limit curves for various strain paths.